Общие понятия теории игр. Теория игр: Введение

3.4.1. Основные понятия теории игр

В настоящее время многие решения проблем в производственной,экономической или коммерческой деятельности зависят от субъективных качеств лица, принимающего решение. При выборе решений в условиях неопределенности всегда неизбежен элемент произвола, а следовательно, и риска.

Задачами о принятии решений в условиях полной или частичной неопределенности занимается теория игр и статистических решений. Неопределенность может принимать форму противодействия другой стороны, которая преследует противоположные цели, препятствует теми или другими действиями или состояниями внешней среды. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания альтернатив и состояний можно представить в виде математической модели, которая называется игрой. Обе стороны конфликта не могут точно предсказать взаимные действия. Несмотря на такую неопределенность, принимать решения приходится каждой стороне конфликта.

Теория игр - это математическая теория конфликтных ситуаций. Основными ограничениями этой теории являются предположение о полной ("идеальной") разумности противника и принятие при разрешении конфликта наиболее осторожного " перестраховочного" решения.

Конфликтующие стороны называются игроками , одна реализация игры партией, исход игры – выигрышем или проигрышем.

Ходом в теории игр называется выбор одного из предусмотренных правилами действия и его реализацию.

Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление.

Случайным ходом называют выбор игроком, осуществляемый не волевым решением игрока, а каким либо механизмом случайного выбора (бросание монеты, сдача карт и т.п.) одного из возможных вариантов действия и его осуществление.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действия при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш (или, что то же самое, минимально возможный средний проигрыш).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

- Комбинаторные игры, в которых правила в принципе дают возможность каждому игроку проанализировать все разнообразные варианты поведения и, сравнив эти варианты выбрать из них наилучший. Неопределенность здесь состоит в слишком большом количестве вариантов, которые надо проанализировать.

- Азартные игры, в которых исход оказывается неопределенным в силу влияния случайных факторов.

- Стратегические игры, в которых неопределенность исхода вызвана тем, что каждый из игроков, принимая решение, не знает, какой стратегии будут придерживаться другие участники игры, так как отсутствует информация о последующих действиях противника (партнера).

- Игра называется парной , если в игре участвуют два игрока.

- Игра называется множественной , если в игре участвуют больше двух игроков.

- Игра называется с нулевой суммой , если каждый игрок выигрывает за счет других, а сумма выигрыша и проигрыша одной стороны равны другой.

- Парная игра с нулевой суммой называется антагонистической игрой.

- Игра называется конечной , если у каждого игрока имеется только конечное число стратегий. В противном случае - игра бесконечная.

- Одношаговые игры, когда игрок выбирает одну из стратегий и делает один ход.

- В многошаговых играх игроки для достижения своих целей делают ряд ходов, которые могут ограничиваться правилами игры или могут продолжаться до тех пор, пока у одного из игроков не останется ресурсов для продолжения игры.

- Деловые игры имитируют организационно-экономические взаимодействия в различных организациях и предприятиях. Преимущества игровой имитации перед реальным объектом таковы:

Наглядность последействий принимаемых решений;

Переменный масштаб времени;

Повторение имеющегося опыта с изменением установок;

Переменный охват явлений и объектов.

Элементами игровой модели являются:

- Участники игры.

- Правила игры.

- Информационный массив, отражающий состояние и движение моделируемой системы.

Проведение классификации и группировки игр позволяет для однотипных игр найти общие методы поиска альтернатив в принятии решения, выработать рекомендации по наиболее рациональному образу действий в ходе развития конфликтных ситуаций в различных сферах деятельности.

3.4.2. Постановка игровых задач

Рассмотрим конечную парную игру с нулевой суммой. Игрок А имеет m стратегий (А 1 А 2 А m), а игрок В – n стратегий (В 1 , В 2 Вn). Такая игра называется игрой размерностью m х n. Пусть а ij - выигрыш игрока А в ситуации, когда игрок А выбрал стратегию А i , а игрок В выбрал стратегию В j . Выигрыш игрока в данной ситуации обозначим b ij . Игра с нулевой суммой, следовательно, а ij = - b ij . Для проведения анализа достаточно знать выигрыш только одного из игроков, допустим А.

Если игра состоит только из личных ходов, то выбор стратегии (А i , В j),однозначно определяет исход игры. Если игра содержит также случайные ходы, то ожидаемый выигрыш – это среднее значение (математическое ожидание).

Предположим, что значения а ij известны для каждой пары стратегий(А i , В j). Составим прямоугольную таблицу, строки которой соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. Эта таблица называется платежной матрицей .

Цель игрока А максимизировать свой выигрыш, а цель игрока В минимизировать свой проигрыш.

Таким образом, платежная матрица имеет вид:

Задача состоит в определении:

1) Наилучшей (оптимальной) стратегии игрока А из стратегий А 1 А 2 А m ;

2) Наилучшей (оптимальной) стратегии игрока В из стратегий В 1 , В 2 Вn.

Для решения задачи применяется принцип, согласно которому участники игры одинаково разумны и каждый из них делает все для того, чтобы добиться своей цели.

3.4.3. Методы решения игровых задач

Принцип минимакса

Проанализируем последовательно каждую стратегию игрока А. Если игрок А выбирает стратегию А 1 , то игрок В может выбрать такую стратегию В j , при которой выигрыш игрока А будет равен наименьшему из чисел a 1j . Обозначим его a 1:

то есть a 1 – минимальное значение из всех чисел первой строки.

Это можно распространить на все строки. Поэтому игрок А должен выбрать ту стратегию, для которой число a i - максимально.

Величина a - гарантированный выигрыш, который может обеспечить себе игрок а при любом поведении игрока В. Величина a называется нижней ценой игры.

Игрок В заинтересован в том, чтобы уменьшить свой проигрыш, то есть обратить выигрыш игрока А в минимум. Для выбора оптимальной стратегии он должен найти максимальное значение выигрыша в каждом столбце и среди них выбрать наименьшее.

Обозначим через b j максимальное значение в каждом столбце:

Наименьшее значение b j обозначим b.

b = min max a ij

b называется верхней границей игры. Принцип, диктующий игрокам выбор игрокам соответствующих стратегий, называется принципом минимакса.

Существуют матричные игры, для которых нижняя цена игры равна верхней, такие игры называются играми с седловой точкой. В этом случае g=a=b называется чистой ценой игры, а стратегии А * i , В * j , позволяющие достичь этого значения - оптимальными. Пара (А * i , В * j)называется седловой точкой матрицы, так как элемент a ij .= g одновременно является минимальным в i-строке и максимальным в j- столбце. Оптимальные стратегии А * i , В * j , и чистая цена являются решением игры в чистых стратегиях, т. е. без привлечения механизма случайного выбора.

Пример 1.

Пусть дана платежная матрица. Найти решение игры, т. е. определить нижнюю и верхнюю цены игры и минимаксные стратегии.

Здесь a 1 =min a 1 j =min(5,3,8,2) =2

a =max min a ij = max(2,1,4) =4

b = min max a ij =min(9,6,8,7) =6

таким образом, нижней цене игры (a=4) соответствует стратегия А 3 .Выбирая эту стратегию, игрок А достигнет выигрыша не менее 4 при любом поведении игрока В. Верхней цене игры (b=6) соответствует стратегия игрока В. Эти стратегии являются минимаксными. Если обе стороны будут придерживаться этих стратегий, выигрыш будет равен 4 (a 33).

Пример 2.

Дана платежная матрица. Найти нижнюю и верхнюю цены игры.

a =max min a ij = max(1,2,3) =3

b = min max a ij =min(5,6,3) =3

Следовательно, a =b=g=3. Седловой точкой является пара (А * 3 , В * 3). Если матричная игра содержит седловую точку, то ее решение находится по принципу минимакса.

Решение игр в смешанных стратегиях

Если платежная матрица не содержит седловой точки (aсмешанной стратегией .

Для применения смешанных стратегий требуются следующие условия:

1) В игре отсутствует седловая точка.

2) Игроками используется случайная смесь чистых стратегий с соответствующими вероятностями.

3) Игра многократно повторяется в одних и тех же условиях.

4) При каждом из ходов игрок не информирован о выборе стратегии другим игроком.

5) Допускается усреднение результатов игр.

В теории игр доказано, что любая парная игра с нулевой суммой имеет по крайней мере одно решение в смешанных стратегиях, отсюда следует, что каждая конечная игра имеет цену g. g - средний выигрыш, приходящийся на одну партию, удовлетворяющий условию a<=g<=b . Оптимальное решение игры в смешанных стратегиях обладает следующим свойством: каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии.

Стратегии игроков в их оптимальных смешанных стратегиях называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш(или минимальный средний проигрыш), равный цене игры g, независимо от того, какие действия предпринимает другой игрок, если он только не выходит за пределы своих активных стратегий.

Введем обозначения:

Р 1 Р 2 … Р m - вероятности использования игроком А стратегий А 1 А 2 ….. А m ;

Q 1 Q 2 …Q n вероятности использования игроком В стратегий В 1 , В 2….. Вn

Смешанную стратегию игрока А запишем в виде:

А 1 А 2 …. А m

Р 1 Р 2 … Р m

Смешанную стратегию игрока B запишем в виде:

B 1 B 2 …. B n

Зная платежную матрицу А, можно определить средний выигрыш (математическое ожидание) М(А,P,Q):

М(А,P,Q)=S Sa ij Р i Q j

Средний выигрыш игрока А:

a =max minМ(А,P,Q)

Средний проигрыш игрока В:

b = min maxМ(А,P,Q)

Обозначим через Р А * и Q В * векторы, соответствующие оптимальным смешанным стратегиям, при которых выполняется:

max minМ(А,P,Q) = min maxМ(А,P,Q)= М(А,P А * ,Q В *)

При этом выполняется условие:

maxМ(А,P,Q В *) <=maxМ(А,P А * ,Q В *)<= maxМ(А,P А * ,Q)

Решить игру – это означает найти цену игры и оптимальные стратегии.

Геометрический метод определения цены игры и оптимальных стратегий

(Для игры 2Х2)

На оси абсцисс откладывается отрезок длиной 1.Левый конец этого отрезка соответствует стратегии А 1 , правый – стратегии А 2 .

По оси ординат откладываются выигрыши а 11 и а 12 .

По линии, параллельной оси ординат из точки 1 откладываются выигрыши а 21 и а 22 .

Если игрок В применяет стратегию В 1 , то соединяем точки а 11 и а 21 , если – В 2, то – а 12 и а 22 .

Средний выигрыш изображается точкой N, точка пересечения прямых В 1 В 1 и В 2 В 2 .Абсцисса этой точки равна Р 2 , а ордината цене игры - g.

По сравнению с прежней технологией выигрыш составляет 55%.

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

Ситуация, в которой эффективность принимаемого одной стороной решения зависит от действий другой стороны, называется конфликтной . Конфликт всегда связан с определенного рода разногласиями (это не обязательно антагонистическое противоречие).

Конфликтная ситуация называется антагонистической , если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину, и наоборот.

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. Например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Каждый из них имеет свои интересы и стремится принимать оптимальные решения, помогающие достигнуть поставленных целей в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать решения, которые эти партнеры будут принимать (они заранее могут быть неизвестны). Чтобы в конфликтных ситуациях принимать оптимальные решения, создана математическая теория конфликтных ситуаций, которая называется теорией игр . Возникновение этой теории относится к 1944 г., когда была издана монография Дж. фон Неймана «Теория игр и экономическое поведение»

Игра - это математическая модель реальной конфликтной ситуации . Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры - это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рассматривать только парные игры. Игроки обозначаются A и B .

Игра называется антагонистической (с нулевой суммой ), если выигрыш одного из игроков равен проигрышу другого.

Выбор и осуществление одного из вариантов действий, предусмотренных правилами, называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход - это сознательный выбор игроком одного из вариантов действий (например, в шахматах).

Случайный ход - это случайно выбранное действие (например, бросание игральной кости). Мы будем рассматривать только личные ходы.

Стратегия игрока - это совокупность правил, определяющих поведение игрока при каждом личном ходе. Обычно в процессе игры на каждом этапе игрок выбирает ход в зависимости от конкретной ситуации. Возможно также, что все решения приняты игроком заранее (т.е. игрок выбрал определенную стратегию).

Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае.

Цель теории игр - разработать методы для определения оптимальной стратегии каждого игрока.

Стратегия игрока называется оптимальной , если она обеспечивает этому игроку при многократном повторении игры максимально возможный средний выигрыш (или минимально возможный средний проигрыш независимо от поведения противника).

Раздел Теория игр представлен тремя онлайн-калькуляторами :

  • 1. Решение матричной игры . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения.
  • 2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц - стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице - выигрыши второго.
  • 3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .

Пример 1. Каждый из игроков, A или B , может записать, независимо от другого, цифры 1, 2 и 3. Если разность между цифрами, записанными игроками, положительна, то A выигрывает количество очков, равное разности между цифрами. Если разность меньше 0, выигрывает B . Если разность равна 0 - ничья.

У игрока A три стратегии (варианта действия): A1= 1 (записать 1), A2= 2, A3= 3, у игрока тоже три стратегии: B1, B2, B3.

B A

Задача игрока A - максимизировать свой выигрыш. Задача игрока B - минимизировать свой проигрыш, т.е. минимизировать выигрыш A . Это парная Основные понятия теории игр

В экономической практике часто имеют место конфликтные ситуации. Игровые модели - это, в основном, упрощенные математические модели конфликтов. В отличие от реального конфликта игра ведётся по четким правилам. Для моделирования конфликтных ситуаций разработан специальный аппарат - математическая теория игр. Стороны, участвующие в конфликте, называются игроками.

Каждая формализованная игра (модель) характеризуется:

  • 1. количеством субъектов - игроков, участвующих в конфликте;
  • 2. вариантом действий для каждого из игроков, называемых стратегиями;
  • 3. функциями выигрыша или проигрыша (платежа) исхода конфликта;

Игра, в которой участвуют два игрока A и B называется парной. Если же количество игроков больше двух, то это игра множественная. Мы будем рассматривать модели только парных игр.

Игра, в которой выигрыш одного из игроков точно равен проигрышу другого, называется антагонистической игрой или игрой с нулевой суммой. С рассмотрения моделей антагонистических игр мы и начнём.

Смоделировать (решить) антагонистическую игру - значит, для каждого игрока указать стратегии, удовлетворяющие условию оптимальности , т.е. игрок A должен получить максимальный гарантированный выигрыш, какой бы своей стратегии не придерживался игрок B, а игрок B должен получить минимальный проигрыш, какой бы своей стратегии не придерживался игрок A. Оптимальные стратегии характеризуются устойчивостью, то есть ни одному из игроков не выгодно отклоняться от своей оптимальной стратегии.

Примечание. Различают игры кооперативные и некооперативные, с полной информацией и не полной. В игре с полной информацией перед каждым ходом каждый игрок знает все возможные ходы (стратегии поведения) и выигрыши. В кооперативных играх допускается возможность предварительных переговоров между игроками. Мы будем рассматривать некооперативные игры с полной информацией.

Математическая теория игр является разделом математики, изучающей принятие решений в конфликтных ситуациях.

Определим основные понятия теории игр.

Игра - упрощенная формализованная модель конфликтной ситуации. Игрок - одна из сторон в игровой ситуации. В зависимости от постановки задачи, стороной может выступать коллектив или даже целое государство. Каждый игрок может иметь свои стратегии. Стратегией i-го игрока x2 называется одно из возможных решений из множества допустимых решений этого игрока.

По количеству стратегий игры делятся на конечные , в которых число стратегий ограничено, и бесконечные , которые имеют бесконечно много различных стратегий.

Каждый из n участников игры может выбирать свою стратегию. Совокупность стратегий x=x1,x2,…,xn, которые выбрали участники игры, называется игровой ситуацией .

Оценить ситуацию x с точки зрения преследуемых ЛПР целей можно, построив целевые функции (или критерии качества), ставящие в соответствие каждой ситуации x числовые оценки f1(x),f2(x),…,fn(x) (например, доходы фирм в ситуации x или их затраты и т. д.).

Тогда цель i- го ЛПР формализуется следующим образом: выбрать такое свое решение xi, чтобы в ситуации x=x1,x2,…,xn число fi(x) было как можно большим (или меньшим). Однако достижение этой цели от него зависит лишь частично, поскольку другие участники игры влияют на общую ситуацию x с целью достижения своих собственных целей (оптимизируют свои целевые функции). Значение целевой функции в той или иной игровой ситуации можно назвать выигрышем игрока в этой ситуации.
По характеру выигрышей игры можно разделить на игры с нулевой и ненулевой суммой. В играх с нулевой суммой сумма выигрышей в каждой игровой ситуации равна нулю. Игры двух игроков с нулевой суммой называются антагонистическими. В этих играх выигрыш одного игрока равен проигрышу другого.

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры.

По виду функции выигрышей игры можно разделить на матричные, биматричные, непрерывные, сепарабельные и т. д.

Матричными играми называются конечные игры двух игроков с нулевой суммой. В этом случае номер строки матрицы соответствует номеру стратегии Ai игрока 1, а номер столбца - номеру стратегии Bj игрока 2.

Элементами матрицы aij является выигрыш игрока 1 для ситуации (реализации стратегий) AiBj. В силу того, что рассматривается матричная игра с нулевой суммой, выигрыш игрока 1 равен проигрышу игрока 2.

Можно показать, что всякая матричная игра с известной матрицей платежей сводится к решению задачи линейного программирования.

Поскольку в прикладных задачах экономики и управления ситуации, сводящиеся к матричным играм, встречаются не очень часто, мы не будем останавливаться на решении этих задач.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации AiBj каждый из игроков имеет свой выигрыш aij для первого игрока и bij- для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. Анализу этой проблемы посвящена тема 6 настоящего учебного пособия.

По степени неполноты информации, которой обладают ЛПР, игры делятся на стратегические и статистические.

Стратегические игры - это игры в условиях полной неопределенности.

Статистические игры - это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента.

Поскольку с теорией статистических игр тесно связана теория принятия экономических решений, то в дальнейшем мы ограничимся рассмотрением только этого класса игр.

Игра «Дилемма заключенных»

Рассмотрим ситуацию, когда задержаны два человека по подозрению в совершении преступления. Следствие, однако, не располагает достаточными уликами, позволяющими передать дело в суд, и потому провоцирует их на добровольное признание. Каждому из задержанных предлагается сделка такого рода. Если оба сознаются, то каждый получит по 5 лет тюрьмы. Если один сознается, возложив вину на другого, то первый будет немедленно отпущен на свободу после проведения одного года в предварительном заключении, а второй получит суровый приговор - 10 лет лишения свободы. Если же ни один из них не сознается, дело будет невозможно закончить и оба проведут в тюрьме по 2 года - максимально возможный срок предварительного заключения.

Матрица выигрышей данной игры, которую определяют как «Дилемма заключенных», имеет две строки и два столбца, поскольку каждый игрок может выбрать одну из двух стратегий поведения: «Сознаваться» и «Не сознаваться». Все элементы этой матрицы отрицательны, поскольку в любом случае каждый заключенный проведет некоторое время в тюрьме, получив отрицательный «выигрыш» (табл. 3.1).

Реализуя несолидарные стратегии поведения, заключенные выберут вариантповедения «Сознаваться» и получат по 5 лет тюрьмы.



Таблица 3.1 - Игра «Дилемма заключенных»

Игра «Конфликт полов»

Рассмотрим ситуацию, когда мужчина и женщина проводят вечер после работы либо в театре, либо на футболе, делая выбор места отдыха независимо друг

от друга. Они симпатизируют друг другу, поэтому каждый из них предпочитает провести вечер вместе, а не порознь. Для мужчины футбол более интересен, чем театр, а для женщины, наоборот, театр предпочтительнее. В данном случае выигрыш игрока измеряется объемом положительных эмоций, или удовольствием, полученным человеком за вечер.

Опишем матрицу выигрышей данной игры. Если встреча мужчины и женщины произошла в театре, то женщина получает максимальный выигрыш, равный 2, - она проводит вечер в желательном месте с желаемым человеком. Мужчина получает при этом меньший выигрыш, равный 1, - он находится в нежелательном месте с желаемым человеком. Если встреча произошла на футболе, то, наоборот, мужчина получает выигрыш 2, а женщина - выигрыш 1. Если мужчина провел вечер на футболе, а женщина в театре, то каждый из них получит небольшой выигрыш 0,5 -он и она провели вечер порознь, но в желательных для них местах. Если мужчина провел вечер в театре, а женщина - на футболе, то их выигрыши равны нулю, поскольку они провели вечер порознь и в нежелательных для них местах.

Матрица выигрышей данной игры, которую называют «Конфликт полов», имеет две строки и два столбца, поскольку каждый игрок может выбрать одну из двух стратегий: «Театр» и «Футбол». Все элементы этой матрицы неотрицательны: в трех из четырех случаев каждый игрок получает какое-либо удовольствие от проведенного вечера, и лишь в одном случае выигрыши равны нулю (табл. 3.2).

Таблица 3.2 – Игра «Конфликт полов»

Игра «Встреча студентов»

Рассмотрим ситуацию, когда два студента проводят время после занятий либо в буфете, либо в библиотеке, делая выбор места времяпрепровождения независимо друг от друга. Они являются друзьями, поэтому предпочитают проводить время вместе. Совместное посещение буфета служит для них лучшим занятием - выигрыш каждого максимален и равен 3. При совместном посещении библиотеки удовлетворение каждого будет меньше, поскольку здесь меньше возможностей для развлечений (громкий разговор, потребление еды и напитков и т. д.). В этом случае выигрыш каждого студента составляет 2. Проведение времени порознь друзья считают скучным, что выражается в низких значениях выигрыша, отвечающих парам несовпадающих стратегий. Совпадение интересов студентов выражается в том, что каждый из них по отдельности предпочитает библиотеку буфету: посещение библиотеки без друга оценивается выигрышем 1, в то время как посещение буфета - нулевым выигрышем.

Матрица выигрышей данной игры, которую называют «Встреча студентов», имеет две строки и два столбца, поскольку каждый студент может выбрать одну из двух стратегий: «Буфет» и «Библиотека» (табл. 3.3).

Таблица 3.3 - Игра «Встреча студентов»

Игра «Проверка знаний»

Рассмотрим ситуацию, когда преподаватель систематически проводит аттестацию студента. При этом он может проверять знания студента, а может не делать этого, выставляя некоторую среднюю оценку автоматически. Студент, в свою очередь, может подготовиться к аттестации, а может не делать этого. Если студент подготовится, а преподаватель проверит, то студент получит максимальный выигрыш 2, обусловленный высокой формальной оценкой, моральным удовлетворением, поощрением преподавателя. Преподаватель также получит максимальный выигрыш 1, обусловленный удовлетворением от хорошо выполненной работы и уважительного отношения студента к предмету и преподавателю. Если студент не подготовится, а преподаватель проверит, то студент получит минимальный выигрыш - 2 (низкая формальная оценка, внутренняя неудовлетворенность, осуждение преподавателя и сокурсников). Преподаватель также получит минимальный выигрыш - 1 (свидетельство педагогического брака и неуважения к предмету и преподавателю). Если студент подготовится, а преподаватель не проверит, то студент испытает некоторое разочарование, которое оценивается выигрышем - 1. Если же студент не подготовится, а преподаватель не проверит, то студент испытает удовлетворение от того, что он смог получить положительную аттестацию без каких-либо усилий. Эта радость студента оценивается выигрышем 1. Преподаватель не испытывает ни положительных, ни отрицательных эмоций, поскольку он не общается со студентом. Поэтому в двух последних случаях его выигрыш равен нулю.

Матрица выигрышей данной игры, которую называют «Проверка знаний», имеет две строки и два столбца, поскольку студент и преподаватель могут выбрать одну из двух соответствующих стратегий (табл. 3.4).

Таблица 3.4 - Игра «Проверка знаний»

1. Основные понятия теории игр и их классификация.................... 4

1.1. Предмет и задачи теории игр.................................................................................... 4

1.2. Терминология и классификация игр.......................................................................... 7

1.3. Примеры игр............................................................................................................. 12

Тесты................................................................................................................................ 15

2. Матричные игры................................................................................................... 16

2.1. Описание матричной игры....................................................................................... 16

Теория игр - это математическая теория конфликтных ситуаций.

Цель теории игр - выработка рекомендаций по разумному поведению участников конфликта (определение оптимальных стратегий поведения игроков).

От реального конфликта игра отличается тем, что ведется по определенным правилам. Эти правила устанавливают последовательность ходов, объем информации каждой стороны о поведении другой и результат игры в зависимости от сложившейся ситуации. Правилами устанавливаются также конец игры, когда некоторая последовательность ходов уже сделана, и больше ходов делать не разрешается.

Теория игр, как и всякая математическая модель, имеет свои ограничения. Одним из них является предположение о полной (“идеальной”) разумности противников. В реальном конфликте зачастую оптимальная стратегия состоит в том, чтобы угадать, в чем противник “глуп” и воспользоваться этой глупостью в свою пользу .

Еще одним недостатком теории игр является то, что каждому из игроков должны быть известны все возможные действия (стратегии) противника, неизвестно лишь то, каким именно из них он воспользуется в данной партии. В реальном конфликте это обычно не так: перечень всех возможных стратегий противника как раз и неизвестен, а наилучшим решением в конфликтной ситуации нередко будет именно выход за пределы известных противнику стратегий, “ошарашивание” его чем-то совершенно новым, непредвиденным .

Теория игр не включает элементов риска, неизбежно сопровождающего разумные решения в реальных конфликтах. Она определяет наиболее осторожное, “перестраховочное” поведение участников конфликта.

Кроме того, в теории игр находятся оптимальные стратегии по одному показателю (критерию). В практических ситуациях часто приходится принимать во внимание не один, а несколько числовых критериев. Стратегия, оптимальная по одному показателю, может быть неоптимальной по другим.

Сознавая эти ограничения и потому, не придерживаясь слепо рекомендаций, даваемых теорий игр, можно все же выработать вполне приемлемую стратегию для многих реальных конфликтных ситуаций.

В настоящее время ведутся научные исследования, направленные на расширение областей применения теории игр.

1.2. Терминология и классификация игр

В теории игр предполагается, что игра состоит из ходов , выполняемых игроками одновременно или последовательно.

Ходы бывают личными и случайными . Ход называется личным , если игрок сознательно выбирает его из совокупности возможных вариантов действий и осуществляет его (например, любой ход в шахматной игре). Ход называется случайным , если его выбор производится не игроком, а каким-либо механизмом случайного выбора (например, по результатам бросания монеты).

Совокупность ходов, предпринятых игроками от начала до окончания игры, называется партией .

Одним из основных понятий теории игр является понятие стратегии. Стратегией игрока называется совокупность правил, определяющих выбор варианта действий при каждом личном ходе в зависимости от ситуации, сложившейся в процессе игры. В простых (одноходовых) играх, когда в каждой партии игрок может сделать лишь по одному ходу, понятие стратегии и возможного варианта действий совпадают. В этом случае совокупность стратегий игрока охватывает все возможные его действия, а любое возможное для игрока i действие является его стратегией. В сложных (многоходовых играх) понятие «варианта возможных действий» и «стратегии» может отличаться друг от друга.

Стратегия игрока называется оптимальной, если она обеспечивает данному игроку при многократном повторении игры максимально возможный средний выигрыш или минимально возможный средний проигрыш, независимо от того, какие стратегии применяет противник. Могут быть использованы и другие критерии оптимальности .

Возможно, что стратегия, обеспечивающая максимальный выигрыш, не обладает другим важным представлением оптимальности, как устойчивостью (равновесностью) решения. Решение игры является устойчивым (равновесным), если соответствующие этому решению стратегии образуют ситуацию, которую ни один из игроков не заинтересован изменить.

Повторим, что задача теории игр - нахождение оптимальных стратегий.

Классификация игр представлена на рис. 1.1.

1. В зависимости от видов ходов игры подразделяются на стратегические и азартные. Азартные игры состоят только из случайных ходов - ими теория игр не занимается. Если наряду со случайными ходами есть личные ходы, или все ходы личные, то такие игры называются стратегическими .

2. В зависимости от числа участников игры подразделяются на парные и множественные. В парной игре число участников равно двум, в множественной - более двух.

3. Участники множественной игры могут образовывать коалиции, как постоянные, так и временные. По характеру взаимоотношений игроков игры делятся на бескоалиционные, коалиционные и кооперативные.

Бескоалиционными называются игры, в которых игроки не имеют право вступать в соглашения, образовывать коалиции, и целью каждого игрока является получение по возможности наибольшего индивидуального выигрыша.

Игры, в которых действия игроков направлены на максимизацию выигрышей коллективов (коалиций) без последующего их разделения между игроками, называются коалиционными .

https://pandia.ru/text/78/553/images/image002_69.gif" width="509" height="75">

https://pandia.ru/text/78/553/images/image006_35.gif" width="509" height="108">

Рис. 1.1. Классификация игр

Исходом кооперативной игры является дележ выигрыша коалиции, который возникает не как следствие тех или иных действий игроков, а как результат их наперед определенных соглашений.

В соответствии с этим в кооперативных играх сравниваются по предпочтительности не ситуации, как это имеет место в бескоалиционных играх, а дележи; и сравнение это не ограничивается рассмотрением индивидуальных выигрышей, а носит более сложный характер.

4. По количеству стратегий каждого игрока игры подразделяются на конечные (число стратегий каждого игрока конечно) и бесконечные (множество стратегий каждого игрока бесконечно).

5. По количеству информации , имеющейся у игроков относительно прошлых ходов, игры подразделяются на игры с полной информацией (имеется вся информация о предыдущих ходах) и неполной информацией . Примерами игр с полной информацией могут быть шахматы, шашки и т. п.

6. По виду описания игры подразделяются на позиционные игры (или игры в развернутой форме) и игры в нормальной форме. Позиционные игры задаются в виде дерева игры. Но любая позиционная игра может быть сведена к нормальной форме , в которой каждый из игроков делает только по одному независимому ходу. В позиционных играх ходы делаются в дискретные моменты времени. Существуют дифференциальные игры, в которых ходы делаются непрерывно. Эти игры изучают задачи преследования управляемого объекта другим управляемым объектом с учетом динамики их поведения, которая описывается дифференциальными уравнениями.

Существуют также рефлексивные игры, которые рассматривают ситуации с учетом мысленного воспроизведения возможного образа действий и поведения противника.

7. Если любая возможная партия некоторой игры имеет нулевую сумму выигрышей f i, https://pandia.ru/text/78/553/images/image009_21.gif" width="60 height=45" height="45">), то говорят об игре с нулевой суммой . В противном случае игры называются играми с ненулевой суммой .

Очевидно, что парная игра с нулевой суммой является антагонистической , так как выигрыш одного игрока равен проигрышу второго, а следовательно цели этих игроков прямо противоположны.

Конечная парная игра с нулевой суммой называется матричной игрой. Такая игра описывается платежной матрицей, в которой задаются выигрыши первого игрока. Номер строки матрицы соответвует номеру применяемой стратегии первого игрока, столбец - номеру применяемой стратегии второго игрока; на пересечении строки и столбца находится соответствующий выигрыш первого игрока (проигрыш второго игрока).

Конечная парная игра с ненулевой суммой называется биматричной игрой. Такая игра описывается двумя платежными матрицами, каждая для соответствующего игрока.

1.3. Примеры игр

Игра 1. Зачет

Пусть игрок 1 - студент, готовящийся к зачету, а игрок 2 - преподаватель, принимающий зачет. Будем считать, что у студента две стратегии: А1- хорошо подготовиться к зачету; А2 - не подготовиться. У преподавателя имеется тоже две стратегии: В1 - поставить зачет; В2 - не поставить зачет. В основу оценки значений выигрышей игроков можно положить, например, следующие соображения, отраженные в матрицах выигрышей

(оценили по заслугам)

(все нормально)

(проявил несправедли вость)

(удалось словчить)

(получил по заслугам)

(дал себя обмануть)

(студент придет еще раз)

Выигрыши студента

Выигрыши преподавателя

Данная игра в соответствии с приведенной выше классификацией является стратегической, парной, бескоалиционной, конечной, описана в нормальной форме, с ненулевой суммой. Более кратко данную игру можно назвать биматричной.

Задача состоит в определении оптимальных стратегий для студента и для преподавателя.

Игра 2. Морра

Игрой “морра” называется игра любого числа лиц, в которой все игроки одновременно показывают (“выбрасывают”) некоторое число пальцев. Каждой ситуации приписываются выигрыши, которые игроки в условиях этой ситуации получают из “банка”. Например, каждый игрок выигрывает показанное им число пальцев, если все остальные игроки показали другое число; он ничего не выигрывает во все остальных случаях. В соответствии с приведенной классификацией данная игра является стратегической; в общем случае, множественной (в этом случае игра может быть бескоалиционной, коалиционной, и кооперативной) конечной.

В частном случае, когда игра парная - это будет матричная игра (матричная игра всегда является антагонистической).

Пусть два игрока «выбрасывают» одновременно один, два или три пальца. При четной сумме выигрывает первый игрок, при нечетной – второй. Выигрыш равен сумме «выброшенных пальцев». Таким образом, в данном случае каждый из игроков имеет по три стратегии, а матрица выигрышей первого игрока (проигрышей второго) имеет вид:

где Аi – стратегия первого игрока, заключающаяся в «выбрасывании» i пальцев;

Вj – стратегия второго игрока, заключающаяся в «выбрасывании» j пальцев.

Что должен делать каждый из игроков, чтобы обеспечить себе максимальный выигрыш?

Игра 3. Борьба за рынки

Некая фирма А, имея в своем распоряжении 5 условных денежных единиц , пытается удержать два равноценных рынка сбыта. Ее конкурент (фирма В), имея сумму равную 4 условным денежным единицам, пытается вытеснить фирму А с одного из рынков. Каждый из конкурентов для защиты и завоевания соответствующего рынка может выделить целое число единиц своих средств. Считается, что если для защиты хотя бы одного из рынков фирма А выделит меньше средств, чем фирма В, то она проигрывает, а во всех остальных случаях – выигрывает. Пусть выигрыш фирмы А равен 1, а проигрыш равен (-1), тогда игра сводится к матричной игре, для которой матрица выигрышей фирмы А (проигрышей фирмы В) имеет вид:

Здесь Аi – стратегия фирмы А, заключающаяся в выделении i условных денежных единиц на защиту первого рынка; Вj – стратегия фирмы В, заключающаяся в выделении j условных денежных единиц на завоевание первого рынка.

Если бы на защиту или завоевание рынков фирмы могли выделить любое количество средств из имеющихся, то игра стала бы бесконечной.

ТЕСТЫ

(В – Верно, Н – Неверно)

1. Всякая конфликтная ситуация является антагонистической.

2. Всякая антагонистическая ситуация является конфликтной.

4. Недостатком теории игр является предположение о полной разумности противников.

5. В теории игр предполагается, что не все возможные стратегии противника известны.

6. Теория игр включает элементы риска, неизбежно сопровождающие разумные решения в реальных конфликтах.

7. В теории игр нахождение оптимальной стратегии осуществляется по многим критериям.

8. Стратегические игры состоят только из личных ходов.

9. В парной игре число стратегий каждого участника равно двум.

10. Игры, в которых действия игроков направлены на максимизацию выигрышей коалиций без последующего их разделения между игроками, называются коалиционными.

11. Исходом кооперативной игры является дележ выигрыша коалиции, который возникает не как следствие тех или иных действий игроков, а как результат их наперед определенных соглашений.

12. По виду описания игры делятся на игры с полной информацией или игры с неполной информацией.

13. Конечная множественная игра с нулевой суммой называется матричной.

14. Конечная парная игра с нулевой суммой называется биматричной игрой.

(Ответы: 1-Н; 2-В; 3-В; 4-В; 5-Н; 6-Н; 7-Н; 8-Н; 9-Н; 10-В; 11-В; 12-Н; 13-Н; 14-Н.)

2. МАТРИЧНЫЕ ИГРЫ

2.1. Описание матричной игры

Наиболее разработанной в теории игр является конечная парная игра с нулевой суммой (антагонистическая игра двух лиц или двух коалиций), называемая матричной игрой.

Рассмотрим такую игру G , в которой участвуют два игрока А и В , имеющие антагонистические интересы: выигрыш одного игрока равен проигрышу второго. Так как выигрыш игрока А равен выигрышу игрока В с обратным знаком, можем интересоваться только выигрышем а игрока А . Естественно, игрок А хочет максимизировать а , а игрок В - минимизировать а . Для простаты отождествим себя мысленно с одним из игроков (пусть это будет игрок А ), тогда будем называть игрока В - “противник” (разумеется, каких-то реальных преимуществ для А из этого не вытекает).

Имитационные модели

Имитационными называются модели, воспроизводящие реальные соотношения между экономическими показателями, описывающими прогнозируемый объект.

В настоящее время имитационные модели разрабатываются как программы для ЭВМ, позволяющие с помощь средств вычислительной техники «проигрывать» (проводить много вариантные расчёты) развития сложных систем. Имитационная модель учитывает временной фактор и наряду с математическими моделями, имитирующими прогнозируемый процесс, содержит блоки, в которых решения принимаются человеком (прогнозистом). Имитация процессов организуется в форме диалога и у прогнозиста имеется возможность на каждом этапе принятия решения, анализируя и оценивая последствия принятия того или иного решения выбрать самое рациональное, по его мнению, решение.

В последние годы имитационные модели находят все более широкое применение для имитации экономических процессов, в которых сталкиваются различные интересы, типа конкуренции на рынке.

Имитационные модели, как и структурные модели, требуют больших трудозатрат на их разработку и высокой квалификации специалистов.

Модели теории игр направлены на математическое описание и выбор решений в конфликтных ситуациях, при которых интересы участников либо противоположны (антагонистические игры), либо не совпадают, хота и не противоположны (игры с противоположными интересами). Для конфликтных ситуаций характерно то, что ни одна из сторон не может полностью контролировать ситуацию и эффективность решений, принимаемых в ходе конфликта каждой из сторон, зависит от действий другой стороны.

Теория игр впервые была систематически изложена О.Моргенштерном и Дж. фон Нейманом в 1944 году и содержала в основном экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после неё теорией игр серьёзно заинтересовались военные, которые увидели в ней аппарат для исследования стратегических решений. В СССР аппарат теории игр для разрешения экономических конфликтов практически не использовался, так как, директивная система планирования исключала наличие конфликтных ситуаций в экономике. С переходом к рыночным отношениям применение моделей теории игр для оценки конфликтных ситуаций и принятия решений в условиях неопределённости стало актуальным.

Содержание игры заключается в том, что каждый из её участников выбирает такую стратегию действий, которая, как он полагает, обеспечивает ему максимальный выигрыш (минимальный проигрыш). Стратегию игрока называют оптимальной, если при её применении выигрыш данного игрока не уменьшается, какими бы стратегиями не пользовался его противник. Результаты принимаемых решений заносятся в специальную таблицу, которая называется матрицей игры или платёжной матрицей. При поиске оптимальных стратегий в теории игр игроки опираются на принцип максимальной осторожности. Данный принцип гласит, что каждый игрок, считая партнёра по игре высоко интеллектуальным соперником, выбирает свою стратегию в предположении о том, что соперник не упустит ни единой возможности использовать его ошибку в своих интересах.


В экономической практике часто приходится придавать игровую форму таким ситуациям, в которых один из участников безразличен к результату игры. Такие игры называют статистическими или играми с «природой», понимая под «природой» всю совокупность внешних обстоятельств. В играх с «природой» степень неопределённости для сознательного игрока возрастает, так как «природа», будучи индеферентной в отношении выигрыша, может предпринимать и такие ответные действия, которые ей совершенно не выгодны.

Рассмотрим игровую ситуацию, в которой игроки и должны принять с каждой стороны по одному решению из трёх возможных. Результаты принимаемых решений (выигрыши игрока ) занесены в платёжную матрицу (табл.14)

Действия игрока :

1. Определяется для каждого решения минимальное значение , ожидаемого выигрыша . Для нашего случая .

2. Из всех возможных выигрышей игрок выбирает максимальное значение , т.е. . Это .