Угол между стороной и плоскостью. Угол между прямой и плоскостью

Давайте повторим определение угла между прямой и плоскостью.

Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней , называется угол между прямой и ее проекцией на плоскость.

Пусть даны плоскость γ и прямая a, которая пересекает эту плоскость и не перпендикулярна к ней.

Построим угол между прямой a и плоскостью γ:

  1. Из любой удобной для нас точки прямой a опустим перпендикуляр к плоскости γ;
  2. Через точки оснований наклонной и перпендикуляра проведем прямую b . Прямая b - проекция прямой a на плоскость γ;
  3. Острый угол между прямыми a и b – это угол между прямой a и плоскостью γ, т.е. ∠(a;b)= ∠(a;γ) , где ∠(a;b) - угол между прямыми а и b; ∠(a;γ) - угол между прямой а и плоскостью γ.

Для решения задач с помощью метода координат нам необходимо вспомнить следующее:

3. Если известны координаты направляющего вектора { a 1 ; b 1 ; c 1 } и вектора нормали
{a; b; c}, то угол между прямой а и плоскостью γ вычисляется по формуле, которую сейчас выведем.

Нам известна формула нахождения угла между прямыми:

; (1)
∠(s; a) = 90°-∠(a;b), тогда cos∠(s;a) =cos (90°-∠(a;b))=sin ∠(a;b) ; (2)
Из (1) и (2) => ; (3)
, где – угол между векторами m и n; (4)
Подставляем (4) в (3) и т.к. ∠(a;b)= ∠(a;γ), то получаем:

4. Если координаты вектора нормали неизвестны, то нам необходимо знать уравнение плоскости.

Любая плоскость в прямоугольной системе координат может быть задана уравнением

ax + by + cz + d = 0,

где хотя бы один из коэффициентов a, b, c отличен от нуля. Эти коэффициенты и будут координатами вектора нормали, т.е. {a; b; c}.

Алгоритм решения задач на нахождение угла между прямой и плоскостью с помощью метода координат:

  1. Делаем рисунок, на котором отмечаем прямую и плоскость;
  2. Вводим прямоугольную систему координат;
  3. Находим координаты направляющего вектора по координатам его начала и конца;
  4. Находим координаты вектора нормали к плоскости;
  5. Подставляем полученные данные в формулу синуса угла между прямой и плоскостью;
  6. Находим значение самого угла.

Рассмотрим задачу:
1. В кубе ABCDA 1 B 1 C 1 D 1 найдите тангенс угла между прямой AC 1 и плоскостью BDD 1 .
Решение:


1. Введем прямоугольную систему координат с началом координат в точке D.
2. Найдем координаты направляющего вектора АС 1 . Для этого сначала определим координаты точек А и С 1:
А(0; 1; 0);
С 1 (1; 0; 1).
{1; -1; 1}.
3. Найдем координаты вектора нормали к плоскости BB 1 D 1 . Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости:
D(0; 0; 0);
D 1 (0; 0; 1);
В(1; 1; 0);
D: a⋅0+b⋅0+c⋅0+d=0;
D 1: a⋅0+b⋅0+c⋅1+d=0;
B: a⋅1+b⋅1+c⋅0+d=0.

Подставим в уравнение: a⋅x+(-a)⋅y+0⋅z+0 = 0;
a⋅x-a⋅y = 0; |:a
x-y = 0.
Т.о., вектор нормали к плоскости BDD 1 имеет координаты:
{1;-1; 0}.
4. Найдем синус между прямой АС 1 и плоскостью BDD 1:

5. Воспользуемся основным тригонометрическим тождеством и найдем косинус угла между прямой АС 1 и плоскостью BDD 1:

6. Найдем тангенс угла между прямой АС 1 и плоскостью BDD 1:

Ответ: .

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.

Решение:

1. Введем прямоугольную систему координат с началом координат в точке B.
2. Найдем координаты направляющего вектора BD . Для этого сначала определим координаты точек B и D:


3. Найдем координаты вектора нормали к плоскости SBC. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости SBC:

Как получили координаты точки S ?

Из точки S опустили перпендикуляр к плоскости основания ABC. Точку пересечения обозначили О. Точка О - проекция точки S на плоскость ABC. Ее координаты по осям х и у будут первыми двумя координатами точки S.

Узнав значение высоты пирамиды, мы нашли третью координату точки S (по оси z)

Треугольник SOB - прямоугольный, следовательно, по теореме Пифагора:



Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:

Получили систему из трех уравнений:


Подставим в уравнение:

Т.о., вектор нормали к плоскости SBD имеет координаты:

.
4. Найдем синус между прямой BD и плоскостью SBD.

Угол а между прямой l и плоскостью 6 может быть определен через дополнительный угол р между заданной прямой l и перпендикуляром п к данной плоскости, проведенной из любой точки прямой (рис. 144). Угол Р дополняет искомый угол а до 90°. Определив истинную величину угла Р путем вращения вокруг прямой уровня плоскости угла, образованного прямой l и перпендикуляром и, остается дополнить его до прямого угла. Этот дополнительный угол и даст истинную величину угла а между прямой l и плоскостью 0.

27. Определение угла между двумя плоскостями.

Истинная величина двугранного угла - между двумя плоскостями Q и л. - может быть определена или путем замены плоскости проекций с целью преобразования ребра двугранного угла в проецирующую прямую (задачи 1 и 2), или если ребро не задано, как угол между двумя перпендикулярами n1 и n2, проведенными к данным плоскостям из произвольной точки М пространства В плоскости этих перпендикуляров при точке М получаем два плоских угла а и Р, которые соответственно равны линейным углам двух смежных углов (двугранных), образованных плоскостями q и л,. Определив истинную величину углов между перпендикулярными n1 и n2 путем вращения вокруг прямой уровня, тем самым определим и линейный угол двугранного угла, образованного плоскостями q и л.

    Кривые линии. Особые точки кривых линий.

На комплексном чертеже кривой ее особые точки, к которым относятся точки перегиба, возврата, излома, узловые точки, являются особыми точками и на ее проекции. Это объясняется тем, что особые точки кривых связаны с касательными в этих точках.

Если плоскость кривой занимает проецирующее положение (рис. а), то одна проекция этой кривой имеет форму прямой.

У пространственной кривой все ее проекции - кривые линии (рис. б).

Чтобы установить по чертежу, какая задана кривая (плоская или пространственная), необходимо выяснить, принадлежат ли все точки кривой одной плоскости. Заданная на рис. б кривая является пространственной, так как точка D кривой не принадлежит плоскости, определяемой тремя другими точками А, В и Е этой кривой.

Окружность - плоская кривая второго порядка, ортогональная проекция которой может быть окружностью и эллипсом

Цилиндрическая винтовая линия (гелиса) - пространственная кривая, представляющая собой траекторию точки, выполняющей винтовое движение.

29.Плоские и пространственные кривые линии.

См. вопрос 28

30. Комплексный чертеж поверхности. Основные положения .

Поверхностью называют множество последовательных положений линий, перемещающихся в пространстве. Эта линия может быть прямой или кривой и называется образующей поверхности. Если образующая кривая, она может иметь постоянный или переменный вид. Перемещается образующая по направляющим, представляющим собой линии иного направления, чем образующие. Направляющие линии задают закон перемещения образующим. При перемещении образующей по направляющим создается каркас поверхности (рис. 84), представляющий собой совокупность нескольких последовательных положений образующих и направляющих. Рассматривая каркас, можно убедиться, что образующие l и направляющие т можно поменять местами, но при этом по верхность получается одна и та же.

Любую поверхность можно получить различными способами.

В зависимости от формы образующей все поверхности можно разделить на линейчатые, у которых образующая прямая линия, и нелинейчатые, у которых образующая кривая линия.

К развертывающимся поверхностям относятся поверхности всех многогранников, цилиндрические, конические и торсовые поверхности. Все остальные поверхности - неразвертывающиеся. Нелинейчатые поверхности могут быть с образующей постоянной формы (поверхности вращения и трубчатые поверхности) и с образующей переменной формы (каналовые и каркасные поверхности).

Поверхность на комплексном чертеже задается проекциями геометрической части ее определителя с указанием способа построения ее образующих. На чертеже поверхности для любой точки пространства однозначно решается вопрос о принадлежности ее данной поверхности. Графическое задание элементов определителя поверхности обеспечивает обратимость чертежа, но не делает его наглядным. Для наглядности прибегают к построению проекций достаточно плотного каркаса образующих и к построению очерковых линий поверхности (рис. 86). При проецировании поверхности Q на плоскость проекций проецирующие лучи прикасаются к этой поверхности в точках, образующих на ней некоторую линию l , которая называется контурной линией. Проекция контурной линии называется очерком поверхности. На комплексном чертеже любая поверхность имеет: на П 1 - горизонтальный очерк, на П 2 - фронтальный очерк, на П 3 - профильный очерк поверхности. Очерк включает в себя, кроме проекций линии контура, также проекции линий обреза.

На понятии проекции наклонной основано определение угла между прямой и плоскостью. Определение. Углом между прямой линией и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость.

На рис. 341 изображен угол а между наклонной AM и ее проекцией на плоскость К.

Примечание. Если прямая параллельна плоскости или лежит в ней, то угол ее с плоскостью считается равным нулю. Если она перпендикулярна к плоскости, то угол объявляется прямым (предыдущее определение здесь в буквальном смысле неприменимо!). В остальных случаях подразумевается острый угол между прямой и ее проекцией. Поэтому угол между прямой и плоскостью никогда не превышает прямого. Еще заметим, что здесь вернее говорить о мере угла, а не об угле (действительно, речь идет о мере наклона прямой к плоскости, понятие же угла как плоской фигуры, ограниченной двумя лучами, не имеет сюда прямого отношения).

Убедимся еще в одном свойстве острого угла между прямой линией и плоскостью.

Из всех углов, образованных данной прямой и всевозможными прямыми в плоскости, угол с проекцией данной прямой наименьший.

Доказательство. Обратимся к рис. 342. Пусть а - данная прямая, - ее проекция на плоскость - произвольная другая прямая в плоскости К (мы провели ее для удобства через точку А пересечения прямой а с плоскостью ). Отложим на прямой отрезок т. е. равный основанию наклонной МА, где проекция одной из точек наклонной а.

Тогда в треугольниках две стороны равны: сторона AM общая, равны по построению. Но третья сторона в треугольнике больше третьей стороны в треугольнике (наклонная больше перпендикуляра). Значит, и противолежащий угол в больше соответствующего угла а в (см. п. 217): , что и требовалось доказать.

Угол между прямой и плоскостью - это наименьший из углов между данной прямой и всевозможными прямыми в плоскости.

Справедлива и такая

Теорема. Острый угол между прямой, лежащей в плоскости, и проекцией наклонной на эту плоскость меньше угла между этой прямой и самой наклонной.

Доказательство. Пусть - прямая, лежащая в плоскости (рис. 342), а - наклонная к плоскости, т - ее проекция на плоскость. Будем рассматривать прямую как наклонную к плоскости тогда будет ее проекцией на указанную плоскость и по предыдущему свойству найдем: что и требовалось доказать. По теореме о трех перпендикулярах видно, что в случае, когда прямая в плоскости перпендикулярна к, проекции наклонной (случай не острого, а прямого угла), прямая также перпендикулярна и к самой наклонной; в этом случае оба угла, о которых мы говорим, прямые и потому равны между собой.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим