Пигменты в клетках растений. Растительные пигменты

Леонтьев Юрий

Кто не восхищался красками цветущего луга, лесной опушки, осенней листвы, даров сада и полей? Но далеко не всем известно, откуда у природы такая богатая палитра цветов. Всей этой красотой обязаны мы специальным красящим веществам – пигментам, которых в растительном мире известно около 2 тысяч.

Скачать:

Предварительный просмотр:

Введение

2 стр.

  1. Растительные пигменты:
  1. Пластиды:
  1. Хлоропласты
  2. Хромопласты
  3. Лейкопласты
  1. Пигменты пластид:
  1. Хлорофиллы
  2. Каротиноиды
  3. Фикобилинпротеиды

4 стр.

  1. Использование растительных пигментов человеком.

14 стр.

  1. Практическая работа.

19 стр.

  1. Вывод.

25 стр.

  1. Литература.

27 стр.

Введение.

Неповторим и загадочен мир растений. Как часто он задаёт нам вопросы, на которые, казалось бы, невозможно найти ответ. Но стоит внимательнее присмотреться, задуматься, проявить любознательность и трудолюбие – и тайна зелёного друга перестанет быть тайной. Жизнь растения раскроется во всей сложности, гармонии, красоте.

Кто не восхищался красками цветущего луга, лесной опушки, осенней листвы, даров сада и полей? Но далеко не всем известно, откуда у природы такая богатая палитра цветов. Всей этой красотой обязаны мы специальным красящим веществам – пигментам, которых в растительном мире известно около 2 тысяч.

Цвет вещества, в том числе и пигмента, определяется его способностью к поглощению света. Если свет, падающий на вещество или орган растения, равномерно отражается, они выглядят белыми. Если же все лучи поглощаются, объект воспринимается как чёрный. Если вещество поглощает только отдельные участки видимой части солнечного спектра, оно приобретает определённую окраску.

В растительных клетках чаще всего встречаются зелёные пигменты - хлорофиллы, жёлто – оранжевые каротиноиды, красные и синие антоцианы, жёлтые флавоны и флавонолы.

Цель моей работы – познакомиться с многообразием растительных пигментов, их значением в жизни растений и человека.

Задачи работы :

  1. Изучить научную литературу по данной теме
  2. Определить основные физические характеристики растительных пигментов (состав, структуру, свойства)
  3. Изучить значение природных красителей для растений и человека.
  4. Сделать выводы

Методы исследования:

  1. Изучение теоретического материала для дальнейшей разработки и изучения данной проблематики
  2. Эксперимент
  3. Наблюдения за ростом и развитием растений
  4. Фотоотчёт
  5. Обработка полученных результатов

Тип проекта : исследовательский, долгосрочный, межпредметный, индивидуальный.

Формы представления результатов проекта : доклад по теме исследования, компьютерная презентация.

I. Растительные пигменты.

Пигменты - красящие вещества, придающие цвет растениям. Растительные пигменты – это крупные органические молекулы, имеющие группировки, ответственные за поглощение света. Для этих группировок характерно наличие цепочки чередующихся простых и двойных связей (-С=С-С=С-). Кроме того, поглощение света усиливается при наличии в молекуле кольцевых структур.

Пигменты Пигменты , связанные с белками и липидами, входят в структуру биологических мембран. У многих видов животных и растений существуют специализированные пигментные клетки или хроматофоры.

Схема 1. Растительные пигменты.

1). Пластиды.

Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.

Предшественниками пластид являются пропластиды , мелкие обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов. Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами. Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды. В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид: хлоропласты (зелёного цвета), хромопласты лейкопласты (бесцветные). Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.

Пластиды – относительно крупные образования клетки. Самые большие из них – хлоропласты – достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами . Лейкопласты и хромопласты могут иметь различную форму.

а). Хлоропласты.

Хлоропласты встречаются во всех зелёных органах растений. Строение пластид может быть рассмотрено на примере хлоропластов (рис. 3). Они имеют оболочку, образованную двумя мембранами: наружной и внутренней. Внутренняя мембрана вдаётся в полость хлоропласта немногочисленными выростами. Мембранная оболочка отграничивает от гиалоплазмы клетки матрикс хлоропласта, так называемую строму . Как строма, так и выросты внутренней мембраны формируют в полости хлоропласта сложную систему мембранных поверхностей, ограничивающих особые плоские мешки, называемые тилакоидами или ламеллами . Группы дисковидных тилакоидов связаны друг с другом таким образом, что их полости оказываются непрерывными. Эти тилакоиды образуют стопки (наподобие стопки монет), или граны. В строме хлоропластов содержатся ферменты и рибосомы, отличающиеся от рибосом цитоплазмы меньшими размерами. Часто имеются один или несколько небольших зёрен первичного крахмала. Генетический аппарат хлоропластов автономен, они содержат собственную ДНК.

Основная функция хлоропластов – фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу, точнее – нескольким его модификациям. Световые реакции фотосинтеза осуществляются в гранах, темновые – в строме хлоропласта.

Хлоропласты способны синтезировать собственные белковые молекулы, так как обладают собственной ДНК.

Рис.3 Схема строения хлоропласта в объёмном изображении (А) и на срезе (Б):

1 – наружная мембрана, 2 – внутренняя мембрана, 3 – строма,

4 – грана, 5 – тилакоид граны, 6 – тилакоид стромы, 7 – нить

пластидной ДНК, 8 – рибосомы хлоропласта (отличающиеся от

цитоплазматических рибосом), 9 – гранулы крахмала

Помимо фотосинтеза, в хлоропластах осуществляется синтез АТФ и АДФ (фосфорилирование), синтез и гидролиз липидов, крахмала и белков, откладывающихся в строме.

б). Хромопласты.

Хромопласты содержаться в клетках лепестков многих растений, зрелых окрашенных плодах (томаты, шиповник, рябина), иногда – в корнеплодах (морковь). Внутренняя структура хромопластов проще структуры хлоропластов. Граны в них отсутствуют. Красноватая или оранжевая окраска хромопластов связана с присутствием в них каротиноидов. Считается, что хромопласты – конечный этап в развитии пластид, т.е. это стареющие хлоропласты и лейкопласты. Наличие хромопластов частично определяет яркую окраску многих цветков, плодов и осенних листьев.

в). Лейкопласты.

Внутренняя структура лейкопластов проще структуры хлоропластов, в них отсутствуют граны. В лейкопластах пигменты отсутствуют, но здесь может осуществляться синтез и накопление запасных питательных веществ, в первую очередь крахмала, иногда белков и жиров. Очень часто в лейкопластах формируются зёрна вторичного запасного крахмала.

2). Пигменты пластид.

хлорофиллы, каротиноиды и фикобилинпротеи. Все они входят в состав пигментных систем в виде хромопротеидов, т.е. пигмент – белковых комплексов. Основное назначение пигментов – поглощать световую энергию (рис. 5), превращая её затем в химическую энергию. Пигменты располагаются на мембранах хлоропластов (тилакоидах), а хлоропласты в клетке обычно ориентируются таким образом, чтобы мембраны находились под прямым углом к источнику света (для максимального поглощения света).

а). Хлорофиллы.

Хлорофиллы поглощают в основном красный и сине-фиолетовый свет, зелёный свет ими отражается, что и придаёт растениям специфическую зелёную окраску, если она не маскируется другими пигментами. В основе строения хлорофиллов лежит Mg – порфириновый скелет.

В состав молекулы хлорофилла (рис. 8) входит плоская голова, поглощающая свет, в центре которой расположен атом магния. Этим можно объяснить, почему дефицит магния приводит к уменьшению образования хлорофилла и пожелтению листьев растения. Молекула хлорофилла включает в себя ещё и длинный гидрофобный (отталкивающий воду) углеводородный хвост. Внутренние мембраны также гидрофобны, поэтому хвосты «забрасываются» внутрь тилакоидных мембран и служат своеобразным якорем. Гидрофильные головы располагаются в плоскости мембранных поверхностей подобно солнечным батареям. У различных хлорофиллов к головам прикреплены различные боковые цепи, что приводит к изменению их спектров поглощения, увеличивая диапазон длин волн поглощаемого света.

Кроме того, имеются различные заместители, например дитерпеновый спирт фитол, придающие молекуле хлорофилла способность встраиваться в липидный слой биологических мембран.

б). Каротиноиды.

Каротиноиды – жёлтые, оранжевые, красные или коричневые пигменты, синтезируемые растениями (а также бактериями и грибами), не растворимы в воде, сильно поглощающие в сине-фиолетовой области. Каротиноиды отчасти выполняют роль дополнительных фотосинтезирующих пигментов, но при этом могут осуществлять и другие функции, с фотосинтезом не связанные. Они называются вспомогательными пигментами, потому что поглощённую ими световую энергию они переносят на хлорофилл. В спектре поглощения каротиноидов обнаруживается три пика в сине-фиолетовой области. Помимо своей функции как вспомогательных пигментов каротиноиды защищают хлорофиллы от избытка света и от окисления кислородом, образующимся в процессе фотосинтеза. Они хорошо замаскированы зелёными хлорофиллами, но становятся видны в листьях до начала листопада, поскольку хлорофиллы разрушаются первыми. Каротиноиды обнаружены в некоторых цветках и фруктах, у которых яркая окраска привлекает насекомых, птиц и млекопитающих, тем самым обеспечивая успешное опыление и распространение семян; к примеру, красный цвет кожицы у томатов обусловлен наличием в ней каротинов. К каротиноидам относятся широко распространённые каротины и ксантофиллы. По химической природе это изопреноидные углеводороды, содержащие 40 углеродных атомов (рис.9). Ксантофиллы – окисленные каротины. Особенно богаты каротинами зелёные листья некоторых растений (например, шпината), корнеплоды моркови, плоды шиповника, смородины, томата и др. У растений каротиноиды представлены главным образом физиологически наиболее активным b – каротином. Каротины наряду с ксантофиллами нередко обуславливают окраску тех или иных организмов. Например, окраска пурпурных бактерий объясняется наличием ксантофиллов.

Каротиноиды, подобно хлорофиллам, очень слабо связаны с белками, они легко извлекаются из растений и используются в качестве лекарственных средств и красителей.

в). Фикобилипротеиды.

Фикобилинпротеиды характерны для хлоропластов, цианобактерий, багрянок и криптофитовых водорослей. Они, как и каротиноиды, участвуют в фотосинтезе, доставляя поглощённую энергию света к молекулам хлорофилла. Фикобилины – стойкие пигмент-белковые комплексы, хорошо растворимые в воде. В их основе лежат хромофорные группы, близкие к

желчным пигментам. Известны два типа фикобилинпротеидов: синие фикоцианины и красные фикоэритрины (рис.10).

II. Использование растительных пигментов человеком.

Краски вообще щедро распределены в природе, как в животном, так и в растительном царстве. Краски в растениях находятся или в готовом состоянии, или в виде промежуточных бесцветных веществ, так называемых "хромогенов", только под влиянием тех или других факторов превращающихся в краски. Только в очень редких случаях краска в растении распределена совершенно равномерно во всех его частях; большей частью пигмент сосредоточивается или в той, или в другой его части. В дело идут иногда: корни (марена, альканна, куркума и др.), древесина (так наз. "деревянные краски": кампеш, фернамбук, сандал, желтое, физетовое дерево и др.), кора (кверцитрон, ло-као, каштан и др.), листья (сумах, датис, некоторые виды пальм и др.), цветки (сафлор, шафран и др.), плоды (грушка, орлеан, бабла и др.), растительный сок (индиго, кашу, алоэ), целые растения (вайда, вау), лишаи (орсейль, лакмус, кудбир), смолы (драконова кровь, лак-дэй и др.).

Весьма замечательно, что в природе синих пигментов, а также и желтых встречается очень много и весьма разнообразного состава, красных - значительно меньше. Хороших зеленых красок немного; распространенный в природе хлорофилл употребляется лишь в сравнительно ограниченных количествах для подкраски жирных масел. С распространением искусственных пигментов естественные растительные краски употребляются все в меньших количествах. Чрезвычайно редко растительные краски употребляются в дело непосредственно в виде измельченного сырья; большей же частью это сырье подвергается той или другой обработке и уже только затем употребляется для окрашивания.

Естественные растительные краски:

Куркума, карри, лепестки цветков календулы

Экстракт семян аннато, морковный сок, нерафинированной пальмовое масло – со временем выцветает

Порошок паприки (также в виде масляной вытяжки – для тех, кто предпочитает «гладкое» мыло)

Алканна – окраска меняется в зависимости от ph-значения мыла; растительный пигмент «можжевельник»

Шалфей, петрушка, листки пачули, шпинат

Красный чай из сандалового дерева и/или красный порошок сандалового дерева – получается теплый красно-коричневый

Корица, молоко, мед, а также большинство ароматных масел ванили

Порошок какао, шоколад, кофе, лечебная глина и т.д.

Ликопин - красный каротиноид, содержащийся в томатах и арбузах, предупреждает рак кожи, защищает от солнечных ожогов.

Длительное исследование более ста тысяч мужчин и женщин в США показало, что риск хронических болезней, особенно сердечно-сосудистых, значительно снижен у тех, кто ест больше "цветных" овощей и фруктов. Особенно эффективны оказались зеленые листовые овощи - салаты и шпинат. В подобном финском исследовании людей среднего возраста как самые полезные для сердца выделены ягоды. В Австралии три десятка мужчин на протяжении полутора месяцев получали утром экстракт пигментов из фруктов, а вечером - из овощей. Состояние сердца и сосудов у участников опыта значительно улучшилось по сравнению с мужчинами, которые питались точно так же, но не получали экстрактов.

Джон Фолтс из Висконсинского университета (США) обнаружил, что экстракты флавоноидов из темной кожицы и косточек красных и черных сортов винограда понижают у собак и людей слипаемость тромбоцитов, уменьшая сворачиваемость крови и тем самым риск появления тромбов. Наиболее эффективны оба экстракта вместе. Сейчас группа Фолтса изучает возможность выпуска таких экстрактов в таблетках как биоактивной добавки для тех, кто не хочет или не может пить красное вино.

Еще более эффективен в этом отношении сок граната. Как показали исследования, проведенные в Медицинском центре Хайфы (Израиль), ежедневный прием 50 миллилитров сока граната на протяжении от года до трех лет позволяет снизить кровяное давление у пациентов с сужением каротидных артерий на 20 процентов.

Пока не ясно почему, но флавоноиды могут противостоять также ожирению и диабету. По некоторым данным, они подавляют гены, ответственные за развитие болезней, и облегчают обмен жизненно важными сигналами между клетками.

Растительные пигменты могут подавлять воспаление. Несколько лет назад обнаружено, что по противовоспалительному действию шесть темно-красных вишен равны одной таблетке аспирина. И, разумеется, вишни не имеют побочных действий, свойственных аспирину, иногда весьма опасных.

Большинство исследователей флавоноидов согласны с тем, что эти вещества лучше получать из натуральных продуктов, а не в виде концентрированных экстрактов и биодобавок. Более того, мощные дозы флавоноидов, принимаемые по принципу "хорошего много не бывает", как показали некоторые исследования, могут вредить. Так, излишек бета-каротина может способствовать развитию рака кожи под действием ультрафиолетовых лучей Солнца. Кроме того, нередко бывают важны и другие вещества, сопровождающие растительные пигменты в натуральных овощах и фруктах.

Не каждый может себе позволить весь год есть ягоды или пить гранатовый сок. Поэтому многие селекционеры мира в последние годы работают над выведением самых обычных сельскохозяйственных культур с повышенным содержанием флавоноидов. Самый известный пример - полученный с помощью генной инженерии немецкими и швейцарскими генетиками золотой рис, обогащенный каротином (населению развивающихся стран, питающемуся в основном рисом, часто не хватает витамина А). В Корнельском университете (США) работают над пшеницей, обогащенной каротином. В лабораториях Министерства сельского хозяйства США выведены огурцы с каротином, имеющие желто-оранжевый цвет. Там же получен сорт моркови, в котором на 75 процентов больше каротина, чем в известных сортах. В Висконсине (США) получен сорт свеклы с повышенным содержанием красного пигмента. В разных странах выведены разноцветные сорта картофеля, обладающие целебными свойствами.

Привычная нам оранжевая морковь - плод (точнее, корнеплод) освободительной "оранжевой" революции,

прошедшей в 1566-1609 годах на территории современных Нидерландов. Местные овощеводы, движимые патриотическими чувствами, подобрали семена от мутантных экземпляров и вывели морковь геральдического цвета Оранской династии. Современные селекционеры получили сорта от белых до почти черных (рис.11).

Основываясь на диких разновидностях картофеля из Анд, американские селекционеры вывели цветные сорта, более вкусные и полезные, чем обычный белый, желтоватый или розоватый на срезе картофель (рис.12). В Германии выведен сорт картофеля, содержащий в 130 раз больше каротина, чем обычные сорта, и спорящий по этому показателю с морковью.

III. Практическая работа.

1.Получение хлорофилльной вытяжки.

Основное оборудование: спиртовка, спички, штатив, держатель для пробирок, пробирки, спирт, растение (листок аспидистра).

Примечание: растение, за несколько дней до проведения опыта, следует поместить в условия интенсивного освещения.

Ход работы:

  1. Поместить в пробирку свёрнутый в трубочку лист зелёного растения.
  2. Налить в пробирку спирт (примерно на1/2-1/3 пробирки).
  3. Закрепить пробирку в держателе.
  4. Медленно нагревать над огнём спиртовки, не доводя спирт до кипения и соблюдая все правила техники безопасности.
  5. Поставить пробирку в штатив.
  6. Через 1-2 минуты вынуть из неё лист.
  7. Рассмотреть лист и содержимое пробирки.
  8. Записать результаты.
  1. Нагреваю листок со спиртом в пробирке, получаем хлорофилловую вытяжку.

2.В результате нагревания лист потерял зелёную окраску.

3.Спирт окрасился в ярко-зелёный цвет, т.к. из листка выделился хлорофилл

Вывод: При кипении хлорофилл выделяется в спирт, спирт окрашивается в зелёный цвет, лист теряет свою окраску.

2.Исчезновение зелёной окраски хлорофилльной вытяжки.

Дополнительное оборудование: растворы соляной кислоты (HCl) и щёлочи (NAOH).

Ход работы:

Прилить раствор HCI к хлорофилльной вытяжке, смешать палочкой.

Прилит раствор HCl к хлорофилльной вытяжке. Содержимое пробирки окрасилось в бурый цвет, т.е. образовался феофитин.

Вывод:

Так как зелёный цвет хлорофилла определяется наличием в нём Mg ,то Cl соединяется с Mg и образуется соль. Такого рода реакции могут происходить в природе. Например, при попадании кислотных дождей на зелёные растения, у растений нарушается процесс фотосинтеза, пропадает зелёная окраска, которая восстановлению не подлежит.

красный

пурпурный

фиолетовый

синий

сине-зеленый

зелено-желтый

Из сока красного салата можно сделать лакмусовые бумажки. Для этого вам понадобится фильтровальная бумага. Ее надо пропитать капустным соком и дать ей высохнуть. После этого разрезать на тонкие полоски. Лакмусовые бумажки готовы.

Ниже приводятся значения PH для некоторых жидкостей:

1. Желудочный сок - 1.0-2.0 ph
2. Лимонный сок - 2.0 ph
3. Пищевой уксус - 2.4 ph
4. Кока-кола - 3.0 ph
5. Яблочный сок - 3.0 ph
6. Пиво - 4.5 ph

7. Кофе - 5.0 ph
8. Шампунь - 5.5 ph
9. Чай - 5.5 ph
10. Слюна - 6.35-6.85 ph
11. Молоко - 6.6-6.9 ph
12. Чистая вода - 7.0 ph
13. Кровь - 7.36-7.44 ph
14. Морская вода - 8.0 ph
15. Раствор пищевой соды - 8.5 ph
16. Мыло (жировое) для рук - 9.0-10.00 ph
17. Нашатырнай спирт - 11.5 ph
18. Отбеливатель (хлорная известь) - 12.5 ph
19. Каустическая сода или натриевая щелочь > 13 ph

  1. Вывод.

Цветовое многообразие растительного мира обязано пигментам. Пигменты - красящие вещества, придающие цвет растениям. Растительные пигменты – это крупные органические молекулы, имеющие группировки, ответственные за поглощение света. В растительных клетках содержатся растительные пигменты, такие как хлорофилл (a,b,c,d), каротиноиды, к которым относятся каротины и ксантофиллы, фикобилинпротеиды. Пигменты находятся чаще в тех или иных структурных образованиях клетки, реже - в жидкостях организма в растворённом состоянии. Так, хлорофилл сосредоточен в хлоропластах, каротиноиды - в хромо - и хлоропластах, гемоглобин - в эритроцитах, флавоноиды - в клеточном соке растений.

Пластиды – относительно крупные образования клетки. различают три основных типа пластид: хлоропласты (зелёного цвета), хромопласты (жёлтого, оранжевого или красного цвета) и лейкопласты (бесцветные). Обычно в клетке встречаются пластиды только одного типа. Хлоропласты встречаются во всех зелёных органах растений. Основная функция хлоропластов – фотосинтез. Хромопласты содержаться в клетках лепестков многих растений, зрелых окрашенных плодах (томаты, шиповник, рябина), иногда – в корнеплодах (морковь). Красноватая или оранжевая окраска хромопластов связана с присутствием в них каротиноидов. В лейкопластах пигменты отсутствуют, но здесь может осуществляться синтез и накопление запасных питательных веществ.

Пигменты, локализующиеся в пластидах и участвующие в процессах фотосинтеза, принадлежат к трём классам. Это хлорофиллы, каротиноиды и фикобилинпротеиды. Основное назначение пигментов – поглощать световую энергию, превращая её затем в химическую энергию. Хлорофиллы поглощают в основном красный и сине-фиолетовый свет, зелёный свет ими отражается, что и придаёт растениям специфическую зелёную окраску. Каротиноиды – жёлтые, оранжевые, красные или коричневые пигменты, синтезируемые растениями (а также бактериями и грибами), сильно поглощающие в сине-фиолетовой области. Они называются вспомогательными пигментами, потому что поглощённую ими световую энергию они переносят на хлорофилл. Каротиноиды используются в качестве лекарственных средств и красителей. Фикобилинпротеиды, как и каротиноиды, участвуют в фотосинтезе, доставляя поглощённую энергию света к молекулам хлорофилла. Известны два типа фикобилинпротеидов: синие фикоцианины и красные фикоэритрины.

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты - вещества, имеющие окраску. Видимая часть спект­ра представлена длинами воли от 400 до 800 им. Органические ве­щества, поглощающие свет с длиной волны менее 400 им, кажутся бесцветными.

Хлорофиллы

Выделенное из листьев зеленое вещество назвали хлорофиллом (от греч. «хлорос» - зеленый и «филлон» - лист). В настоящее вре­мя известно около 10 хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших зеленых растений содержатся хлорофиллы а и b. Хлорофилл с содержится в диатомовых водорослях, хлорофилл d - в красных водорослях. Кроме того, известны четыре бактериохлорофилла (а, b, с иd ), содержащиеся в клетках фотосинтезирующих бактерий., В клетках зеленых бактерий содержатся бактериохлорофиллы с и d. В клетках пурпурных бактерий - бактериохлорофиллы а и b. Основ­ными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофилл для бактерий. Впервые точное представление о пигментах зеленого листа было получено благодаря работам крупнейшего русского ботаника М. С. Цвета. Он выделил пигменты листа в чистом виде и разработал новый хроматографический метод разделения веществ. Хлорофиллы а и Ъ различаются по цвету. Хлорофилл а имеет сине-зеленый оттенок, а хлорофилл Ъ - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом Ъ.

Химические свойства хлорофилла

По химическому строению хлорофилл - это сложный эфир дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магний-порфиринам. В центре молекулы хлорофилла расположен атом магния, кото­рый соединен с четырьмя азотами пиррольных группировок. В пиррольных группировках хлорофилла имеется система чередующихся двойных и простых связей. Это и есть хромофорная группа хлоро­филла, обусловливающая его окраску.

Расстояние между атомами азота пиррольных группировок в ядре хлорофилла составляет 0,25 нм. Интересно, что диаметр атома маг­ния равен 0,24 нм. Таким образом, магний почти полностью заполня­ет пространство между атомами азота пиррольных группировок. Это придает ядру молекулы хлорофилла дополнительную прочность. Еще К. А. Тимирязев обратил внимание на близость химического строения двух важнейших пигментов: зеленого - хлорофилла листьев и крас­ного - гемина крови. Действительно, если хлорофилл относится к магний-порфиринам, то гемин - к железопорфиринам. Сходство это не случайно и служит еще одним доказательством единства всего органического мира.

Одной из специфических черт строения хлорофилла является на­личие в его молекуле, помимо четырех гетероциклов, еще одной ци­клической группировки из пяти углеродных атомов - циклопентанона. В циклопептанонном кольце содержится кетогруппа, обладаю­щая большой реакционной способностью. Есть данные, что в результате процесса эполизации по месту этой кетогруппы к молекуле хло­рофилла присоединяется вода.

Извлеченный из листа хлорофилл легко реагирует как с кислота­ми, так и со щелочами. При взаимодействии со щелочью происходит омыление хлорофилла, в результате чего образуются два спирта и щелочная соль хлорофиллина. В интактном живом листе от хлоро­филла может отщепляться фитол под воздействием фермента хлорофиллазы. При взаимодействии со слабой кислотой извлеченный хлорофилл теряет зеленый цвет, образуется соединение феофитин, у которого атом магния в центре молекулы замещен на два атома водорода.

Хлорофилл в живой интактной клетке обладает способностью к обратимому окислению и восстановлению. Способность к окислитель­но-восстановительным реакциям связана с наличием в молекуле хло рофилла сопряженных двойных связей. Эти связи фиксированы не прочно, и при их перемещении азот пиррольных ядер может окис­ляться (отдавать электрон) или присоединять электрон (восстанав­ливаться).

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофильными свойствами, а фитольный конец - гидрофобными. Это свойство молекулы хлорофилла обусловливает определенное рас­положение ее в мембранах хлоропластов. Исследования показали, что свойства хлорофилла, находящегося в листе и извлеченного из листа, различны, так как в листе он на­ходится в комплексном соединении с белком подобно гемоглобину крови. Это доказывается следующими данными: 1. Спектр поглоще­ния хлорофилла, находящегося в листе, иной по сравнению с извле­ченным хлорофиллом. 2. Хлорофилл невозможно извлечь абсолютным спиртом из сухих листьев. Экстракция протекает успешно, только если листья увлажнить или к спирту добавить воды. 3. Выделенный из листа хлорофилл легко подвергается разрушению под влиянием самых разнообразных воздействий (повышенная кислотность, кисло­род и даже свет). Между тем в листе хлорофилл достаточно устой­чив ко всем перечисленным факторам. Следует заметить, что связь между хлорофиллом и белком несколько иного характера, чем между гемином и белком. Установлено, что для гемоглобина характерно по­стоянное соотношение - на 1 молекулу белка приходится 4 молекулы гемина. Между тем соотношение между хлорофиллом и белком раз­лично (от 3 до 10 молекул хлорофилла на 1 молекулу белка). Это соотношение претерпевает изменения в зависимости от типа расте­ний, фазы их развития, условий среды. Связь между молекулами белка и хлорофиллом осу­ществляется путем нестойких комплексов, образующихся при взаимо­действии кислых групп белковых молекул и азота пиррольных колец. Чем выше содержание дикарбоновых аминокислот в белке, тем луч­ше идет их комплексирование с хлорофиллом. Блокирование карбок­сильных групп в белке сильно уменьшает его способность к связыва­нию с хлорофиллом. Белки, связанные с хлорофиллом, характеризу­ются низкой изоэлектрической точкой (3,7-4,9). Молекулярная мас­са этих белков порядка 68 тыс.

Важным свойством молекул хлорофилла является их способность к взаимодействию друг с другом. В результате этого происходит их переход из мономерной в агрегированную форму, которая может воз­никнуть в результате взаимодействия двух и более молекул при их близком расположении друг к другу. В процессе образования хлорофилла его состояние в живой клетке закономерно меняется. При этом и происходит его агрегация.

Биологические пигменты (биохромы) - окрашенные вещества, входящие в состав тканей организмов. Цвет пигментов определяется наличием в их молекулах хромофорных групп, избирательно поглощающих свет в определённой части видимого спектра солнечного света. Пигментная система живых существ - звено, связывающее световые условия окружающей среды и обмен веществ организма. Биологические пигменты играют важную роль в жизнедеятельности живых существ.

Группы биологических пигментов:Каротиноиды -содержатся в растениях, устойчивых к пониженным температурам. Когда хлорофилл исчерпывается в холодное время года, листья приобретают заметную жёлтую или оранжевую окраску за счёт пролонгированного действия пигмента каротиноида. Каротиноиды защищают растения от пагубного действия солнечного света, принимая УФ-излучения солнца на себя, трансформируя в энергию и передавая её хлорофиллу.

К каротиноидам относятся такие пигменты, как:- каротин - жёлто-оранжевый пигмент, - гематохром – красный пигмент,

Ксантофилл – желтый пигмент- ликопин – красный, красно-оранжевый пигмент,- лютеин – желтый пигмент,

и другие. Порфирины В эту группу входят биологические пигменты, в составе которых присутствует порфириновый комплекс.К этой группе относятся также растительные пигменты - хлорофилл (зеленый пигмент) , феофитин и т. п. Как правило, пигменты этого класса участвуют в фотохимических процессах, а также являются ферментами, задействованными в обмене веществ. Их роль как собственно красителей второстепеннаАнтоцианы - придают растениям окраску в диапазоне от розовой, красной, сиреневой, до синей и тёмно-фиолетовой. Антоцианы образуются в процессах гидролиза крахмала. Усиленное образование антоцианов в клетках растения происходит при снижениях температур окружающей среды, при остановках синтеза хлорофилла, при интенсивном освещении УФ-лучами, при недостатке фосфора, необходимого для ввязывания гидролизованных крахмалом сахаров. При этом окраска листьев растений изменяется от зелёных до красных и синих цветов.Фитохром - голубой растительный пигмент белкового строения, контролирует процессы цветения и прорастания семян. У одних растений ускоряя цветение, у других - задерживая. Фитохром играет роль "биологических часов" растения, механизм действия пока не изучен. Известно, что строение пигмента меняется в зависимости от светлого и тёмного времени суток, сигнализируя об этом растению. Фитохром связан с клеточными мембранами и встречается практически во всех органах растения.Меланин - пигмент, встречающийся как в клетках растений, так и животных. В частности, он придаёт чёрный и коричневый цвет волосам. Отсутствие меланина в клетках делает животных и человека альбиносами.Структура молекул меланина жидкокристаллическая. Пигмент является сильным антиоксидантом. Синтетически продуцированный меланин в водных растворах оказывает на растение удивительные свойства - ускоряет рост и созревание плодов, редуцирует деятельность камбия, ускоряет прорастание семянАнтохлор - пигмент жёлтого цвета. Встречается в клетках кожици лепестков первоцвета (баранчики, примула), льнянки, жёлтого мака, георгины, в плодах лимонов и других растениях.Антофеин - редко встречающийся пигмент тёмного цвета. Вызывает окраску пятен на крыльях венчика у русских бобов (Faba vulgaris).Хлорофилл - зелёный пигмент, обусловливающий окраску хлоропластов растений в зелёный цвет. При его участии осуществляется процесс фотосинтеза. По химическому строению хлорофиллы - магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и структурно близки гему. По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового. Эмпирическая формула - C55H7205N4Mg. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам.

формула хлорофиллина:

Химические свойства .

Хлорофилл содержит четыре соединенных между собой остатка пиррола, которые образуют порфириновое ядро. Порфириновое ядро связано двумя основными и двумя дополнительными валентностями с атомом магния.

Вместе с тем структурная формула хлорофилла а свидетельствует о том, что хлорофилл представляет собой сложный эфир двуосновной кислоты и двух спиртов – метилового и высокомолекулярного непредельного спирта фитола, являющегося производным изопрена. Именно наличие остатка фитола в хлорофилле придает последнему липидные свойства, проявляющиеся в его растворимости в жировых растворителях. При настаивании зеленых листьев в этиловом спирте можно заметить образование в клетках зеленых кристаллов. Кристаллы эти представляют собой этилхлорофиллид – продукт замещения остатка фитола в хлорофилле остатком этилового спирта. Расщепление сложноэфирной связи между карбоксильной группой молекулы хлорофилла и остатком фитола с последующим замещением этого последнего остатком этилового спирта происходит под действием особого фермента – хлорофиллазы.

Физические свойства. Mолекулярный вес хлорофилла a 893,52. В изолированном состоянии хлорофилл образует черно-голубые микрокристаллы, которые плавятся с образованием жидкости при 117-120°С. Хлорофилл а легко растворяется в диэтиловом эфире, этаноле, ацетоне, хлороформе, бензоле, пиридине. Растворы хлорофилла а имеют сине-зеленую окраску и обладают сильной красной флуоресценцией. Главные максимумы спектра поглощения разбавленных растворов хлорофилла а в диэтиловом эфире - 429 и 660 нм.

План лекции:

4. Биосинтез хлорофилла

6. Каротиноиды

7. Фикобилины

1. Пигменты фотосинтеза. Хлорофиллы

Для того чтобы свет мог оказывать влияние на растительный организм и, в част­ности, быть использованным в процессе фотосинтеза, необходимо его погло­щение фоторецепторами-пигментами. Пигменты - это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеле­ные лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Состав пигментов зависит от систематического положения группы организ­мов. У фотосинтезирующих бактерий и водорослей пигментный состав очень разнообразен (хлорофиллы, бактериохлорофиллы, бактериородопсин, каротиноиды, фикобилины). Их набор и соотношение специфичны для различных групп и во многом зависят от среды обитания организмов. Пигменты фотосин­теза у высших растений значительно менее разнообразны. Пигменты, сконцен­трированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.

Важнейшую роль в процессе фотосинтеза играют зеленые пигменты -хлорофил­лы. Французские ученые П.Ж. Пелетье и Ж. Кавенту (1818) выделили из листьев зеленое вещество и назвали eгo хлорофиллом (от греч. «хлорос» - зеленый и «филлон» - лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлоро­филл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях. Кроме того, известны четыре бактериохлорофилла (a, b, с и d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий имеются бактериохлорофиллы с и d, в клетках пурпурных бактерий - бактериохлоро­филлы а и b . Основными пигментами, без которых фотосинтез не идет, являют­ся хлорофиллы для зёленых растений и бактериохлорофиллы для бактерий.

Впервые точное представление о пигментах зелёного листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал хроматографический метод разделения веществ и выделил пигменты листа в чистом виде. Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкоё применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдель­ные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хоро­шо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше, чем хлорофилла b.

2. Химические свойства хлорофилла

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов фитола и метилового. Эмпирическая формула - C 55 H 72 O 5 N 4 Mg. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам.

В хлорофилле водород карбоксильных групп замещен остатками двух спир­тов - метилового СН 3 ОН и фитола С 20 Н 39 ОН поэтому хлорофилл является слож­ным эфиром. На рисунке 1, А дана структурная формула хлорофилла а .

Хлорофилл b отличается тем, что содержит на два атома водорода меньше и на один_ атом кислорода больше (вместо группы СН 3 группа СНО (рис. 1, Б) . В связи с этим молекулярная масса хлорофилла а - 893 и хлорофилла b - 907. В 1960 г. Р.Б. Вудворд осуществил полный синтез хлорофилла.

В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных группировок. В пиррольных группировках хлорофилла имеется система чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обусловливающая поглощение опреде­ленных лучей солнечного спектра и его окраску. Диаметр порфиринового ядра составляет 10 нм, а длина фитольного остатка - 2 нм.

Рисунок 1 – Хлрофиллы а и b

Расстояние между атомами азота пиррольных группировок в ядре хлорофил­ла составляет 0,25 нм. Интересно, что диаметр атома магния равен 0,24нм. Та­ким образом, магний почти полностью заполняет пространство между атомами азота пиррольных группировок. Это придает ядру молекулы хлорофилла дополнительную прочность. Еще К.А. Тимирязев обратил внимание на близость химического строения двух важнейших пигментов: зеленого - хлорофилла листьев и красного - гемина крови. Действительно, если хлорофилл относится к магний порфиринам, то гемин - к железопорфиринам. Сходство это не случайно и служит еще одним доказательством единства всего органического мира.

Одной из специфических черт строения хлорофилла является наличие в его молекуле помимо четырех гетероциклов еще одной циклической группировки из пяти углеродных атомов - циклопентанона. В циклопентановом кольце со­держится кетогруппа, обладающая большой реакционной способностью. Есть данные, что в результате процесса энолизации по месту этой кетогруппы к мо­лекуле хлорофилла присоединяется вода.

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофильными свойствами, а фитольный конец - гидрофобными. Это свойство молеку­лы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой.

Извлеченный из листа хлорофилл легко реагирует как с кислотами, так и со щелочами. При взаимодействии со щелочами происходит омыление хлорофилла в результате чего образуются, два спирта и щелочная соль кислоты хлорофиллина. В интактном живом листе от хлорофилла может отщепляться фитол под воздействием фермента хлорофиллазы. При взаимодействии со слабой кислотой извлеченный хлорофилл теряет зеленый цвет, образуется соединение феофитин, у которого атом магния в центре молекулы замещен на два атома водорода.

Хлорофилл в живой интактной клетке обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связана с наличием в молекуле хлорофилла сопряженных двойных связей с подвижными
π-электронами и атомов азота с неподеленными электронами. Азот пиррольных ядер может окисляться (отдавать электрон) или восстанавливаться (присоединять электрон).

Исследования показали, что свойства хлорофилла, находящегося в листе и извлеченного из листа, различны, так как в листе он находится в комплексном соединении с белком. Это доказывается следующими данными:

Спектр поглощения хлорофилла, находящегося в листе, иной по сравнению с извлеченным хлорофиллом.

Хлорофилл невозможно извлечь абсолютным спиртом из сухих листьев. Экстракция протекает успешно, только если листья увлажнить или к спирту добавить воды, которая разрушает связь между хлорофиллом и белком.

Выделенный из листа хлорофилл легко подвергается разрушению под влия­нием самых разнообразных воздействий (повышенная кислотность, кислород и даже свет).

Между тем в листе хлорофилл достаточно устойчив ко всем перечисленным фак­торам. Следует отметить, что хотя крупный русский ученый В. Н. Любименко и предлагал этот комплекс назвать хлороглобином, по аналогии с гемоглобином, связь между хлорофиллом и белком иного характера, чем между гемином и белком. Для гемоглобина характерно постоянное соотношение - на 1 молекулу белка приходится 4 молекулы гемина. Между тем соотношение между хлорофил­лом и белком различно и претерпевает изменения в зависимости от типа растений, фазы их развития, условий среды (от 3 до 10 молекул хлорофилла на 1 молекулу белка). Связь между молекулами белка и хлорофиллом осуществляется путем нестойких комплексов, образующихся при взаимодействии кислотных групп белковых молекул и азота пиррольных колец. Чем выше содержание дикарбоновых аминокислот в белке, тем лучше идет их комплексирование с хлорофиллом (Т.Н.Годнее). Белки, связанные с хлорофиллом, характеризуются низкой изоэлектрической точкой (3,7-4,9). Молекулярная масса этих белков порядка 68 кДа. Вме­сте с тем хлорофилл может взаимодействовать и с липидами мембран.

Важным свойством молекул хлорофилла является их способность к взаимодействию друг с другом. Переход из мономерной в агрегированную форму воз­ник в результате взаимодействия двух и более молекул при их близком располо­жении друг к другу. В процессе образования хлорофилла его состояние в живой клетке закономерно меняется. При этом и происходит его агрегация (А.А. Красновский). В настоящее время показано, что хлорофилл в мембранах пластид находится в виде пигмент-липопротеидных комплексов с различной степенью агрегации.

3. Физические свойства хлорофилла

Как уже отмечалось, хлорофилл способен к избирательному поглощению света. Спектр поглощения данного соединения определяется его способностью погло­щать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения К.А. Тимирязев пропускал луч света через рас­твор хлорофилла. Часть лучей поглощалась хлорофиллом, и при последующем пропускании через призму в спектре обнаруживались черные полосы. Было по­казано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом хло­рофилл а в растворе имеет максимум поглощения 429 и 660 нм, тогда как хло­рофилл b - 453 и 642 нм. Однако необходимо учитывать, что в листе спектры поглощения хлорофилла меняются в зависимости от его состояния, степени аг­регации, адсорбции на определенных белках. В настоящее время показано, что есть формы хлорофилла, поглощающие свет с длиной волны 700, 710 и даже 720 нм. Эти формы хлорофилла, поглощающие свет с большой длиной волны, имеют особенно важное значение в процессе фотосинтеза.

Хлорофилл обладает способностью к флуоресценции. Флуоресценция пред­ставляет собой свечение тел, возбуждаемое освещением и продолжающееся очень короткий промежуток времени (10 8 -10 9 с). Свет, испускаемый при флюорес­ценции, имеет всегда большую длину волны по сравнению с поглощенным. Это Связано с тем, что часть поглощенной энергии выделяется в виде тепла. Хлоро­филл обладает красной флуоресценцией.

4. Биосинтез хлорофилла

Синтез хлорофилла происходит в две фазы: темновую - до протохлорофиллида и световую - образование из протохлорофиллида хлорофиллида (рис. 2). Син­тез начинается с превращения глутаминовой кислоты в δ-аминолевулиновую кислоту. 2 молекулы δ-аминолевулиновой кислоты конденсируются в порфобилиноген. Далее 4 молекулы порфобилиногена превращаются в протопорфирин IX. После этого в кольцо встраивается магний и получается протохлорофиллид. На свету и в присутствии НАДН образуется хлорофиллид: протохлорофиллид + 2Н + + hv →хлорофиллид

Рисунок 2 - Схема биосинтеза хлорофилла


Протоны присоединяются к четвертому пиррольному кольцу в молекуле пиг­мента. На последнем этапе происходит взаимодействие хлорофиллида со спир­том фитолом: хлорофиллид + фитол → хлорофилл.

Поскольку синтез хлорофилла - процесс многоэтапный, в нем участвуют раз­личные ферменты, составляющие, по-видимому, полиферментный комплекс. Интересно заметить, что образование многих из этих белков-ферментов ус­коряется на свету. Свет косвенно ускоряет образование предшественников хлорофилла. Одним из наиболее важных ферментов является фермент, катали­зирующий синтез δ-аминолевулиновой кислоты (аминолевулинатсинтаза). Важ­но отметить, что активность этого фермента также повышается на свету.

5. Условия образования хлорофилла

Исследования влияния света на накопление хлорофилла в этиолированных про­ростках позволили установить, что первым в процессе зеленения появляется хлорофилл а. Спектрографический анализ показывает, что процесс образования хлорофилла идет очень быстро. Так, уже через
1 мин после начала освещения выделенный из этиолированных проростков пигмент имеет спектр поглощения, совпадающий со спектром поглощения хлорофилла а. По мнению А.А. Шлыка, хлорофилл b образуется из хлорофилла а.

При исследовании влияния качества света на образование хлорофилла в боль­шинстве случаев проявилась положительная роль красного света. Большое значение имеет интенсивность освещения. Существование нижнего предела ос­вещенности для образования хлорофилла было показано в опытах В.Н. Любименко для проростков ячменя и овса. Оказалось, что освещение электрической лампой мощностью 10 Вт на расстоянии 400 см было пределом, ниже которого образование хлорофилла прекращалось. Существует и верхний предел освещен­ности, выше которого образование хлорофилла тормозится.

Проростки, выросшие в отсутствие света, называют этиолированными. Такие проростки характеризуются измененной формой (вытянутые стебли, неразвившиеся листья) и слабой желтой окраской (хлорофилла в них нет). Как было ска­зано выше, образование хлорофилла на заключительных этапах требует света.

Еще со времен Ю. Сакса (1864) известно, что в некоторых случаях хлоро­филл образуется и в отсутствие света. Способность образовывать хлорофилл в темноте характерна для организмов, стоящих на нижней ступени эволюцион­ного процесса. Так, при благоприятных условиях питания некоторые бактерии могут синтезировать в темноте бактериохлорофилл. Цианобактерии при доста­точном снабжении органическим веществом растут и образуют пигменты в тем­ноте. Способность к образованию хлорофилла в темноте обнаружена и у таких высокоорганизованных водорослей, как харовые. Лиственные и печеночные мхи сохраняют способность образовывать хлорофилл в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. Более развита эта способность у теневыносливых пород хвойных деревьев. По мере роста про­ростков в темноте образовавшийся хлорофилл разрушается, и на 35-40-й день проростки в отсутствие света погибают. Интересно заметить, что проростки хвой­ных, выращенные из изолированных зародышей в темноте, хлорофилла не об­разуют. Однако достаточно присутствия небольшого кусочка нераздробленного эндосперма, чтобы проростки начинали зеленеть. Зеленение происходит даже в том случае, если зародыш соприкасается с эндоспермом другого вида хвойных деревьев. При этом наблюдается прямая корреляция между величиной окисли­тельно-восстановительного потенциала эндосперма и способностью пророст­ков зеленеть в темноте.

Можно сделать заключение, что в эволюционном плане хлорофилл перво­начально образовался как побочный продукт темнового обмена. Однако в даль­нейшем на свету растения, обладающие хлорофиллом, получили большее преимущество благодаря возможности использовать энергию солнечного све­та, и эта особенность была закреплена естественным отбором.

Образование хлорофилла зависит от температуры. Оптимальная температура для накопления хлорофилла 26-30°С. От температуры зависит лишь образова­ние предшественников хлорофилла (темновая фаза). При наличии уже образо­вавшихся предшественников хлорофилла процесс зеленения (световая фаза) идет с одинаковой скоростью независимо от температуры.

На скорость образования хлорофилла оказывает влияние содержание воды. Сильное обезвоживание проростков приводит к полному прекращению обра­зования хлорофилла. Особенно чувствительно к обезвоживанию образование протохлорофиллида.

Еще В.И. Палладии обратил внимание на необходимость углеводов для про­текания процесса зеленения. Именно с этим связано то, что зеленение этио­лированных проростков на свету зависит от их возраста. После 7-9-дневного возраста способность к образованию хлорофилла у таких проростков резко падает. При опрыскивании сахарозой проростки снова начинают интенсивно зеленеть.

Важнейшее значение для образования хлорофилла имеют условия минераль­ного питания. Прежде всего необходимо достаточное количество железа. При недостатке железа листья даже взрослых растений теряют окраску. Это явление названо хлорозом. Железо - важный катализатор образования хлорофилла. Оно необходимо на этапе синтеза δ-аминолевулиновой кислоты, а также синтеза про-топорфирина. Большое значение для обеспечения синтеза хлорофилла имеет нормальное снабжение растений азотом и магнием, так как оба эти элемента входят в состав хлорофилла. При недостатке меди хлорофилл легко разрушает­ся. Это, по-видимому, связано с тем, что медь способствует образованию ус­тойчивых комплексов между хлорофиллом и соответствующими белками.

Исследование процесса накопления хлорофилла у растений в течение веге­тационного периода показало, что максимальное содержание хлорофилла приурочено к началу цветения. Есть даже мнение, что повышение образования хлорофилла может быть использовано как индикатор, указывающий на готов­ность растений к цветению. Синтез хлорофилла зависит от деятельности корне­вой системы. Так, при прививках содержание хлорофилла в листьях привоя за­висит от свойств корневой системы подвоя. Возможно, что влияние корневой системы связано с тем, что там образуются гормоны (цитокинины). У двудом­ных растений большим содержанием хлорофилла характеризуются листья жен­ских особей.

6. Каротиноиды

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пиг­менты, относящиеся к группе каротиноидов. Каротиноиды - это желтые и оран­жевые пигменты алифатического строения, производные изопрена. Кароти­ноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Кароти­ноиды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента -
β-каротин (оранжевый) С 40 Н 56 и ксантофилл (желтый) C 40 H 56 O 2 . Каротин состоит из 8 изопреновых остатков (рис. 3).

Рисунок 3 – Структура β-каротина

При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы каротин превращается в 2 молекулы витамина А. Обращает на себя внимание сходство в структуре фитола - спирта, входящего в состав хлорофилла, и углеродной цепочки, соединяю­щей иононовые кольца каротина. Предполагается, что фитол возникает как про­дукт гидрирования этой части молекулы каротиноидов. Поглощение света каротиноидами, их окраска, а также способность к окислительно-восстановительным реакциям обусловлены наличием конъюгированных двойных связей, β-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплек­сов с белками.

Уже тот факт, что каротиноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие впроцессе фотосинтеза. Однако не отмечено ни одного случая, когда в отсутст­вие хлорофилла этот процесс осуществляется. В настоящее время установлено, что каротиноиды, поглощая определенные участки солнечного спектра, пере­дают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Физиологическая роль каротиноидов не ограничивается их участием в пе­редаче энергии на молекулы хлорофилла. По данным русского исследователя
Д.И. Сапожникова, на свету происходит взаимопревращение ксантофиллов (виолаксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе разложения воды и выделения кислорода при фотосинтезе.

Имеются данные, что каротиноиды выполняют защитную функцию, предо­храняя различные органические вещества, в первую очередь молекулы хлорофил­ла, от разрушения на свету в процессе фотоокисления. Опыты, проведенные на мутантах кукурузы и подсолнечника, показали, что они содержат протохлорофиллид (темновой предшественник хлорофилла), который на свету переходит в хлорофилл а, но разрушается. Последнее связано с отсутствием способности исследованных мутантов к образованию каротиноидов.

Ряд исследователей указывают, что каротиноиды играют определенную роль в половом процессе у растений. Известно, что в период цветения высших рас­тений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а также в лепестках цветков. По мнению П. М. Жуков­ского, микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльцевые зерна имеют белую окраску, а созревшая пыльца - желто-оранжевую. В половых клетках водорослей наблюдается дифференцированное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлорофилл. Высказывается мнение, что именно каро­тин обусловливает подвижность сперматозоидов. По данным В. Мевиуса, мате­ринские клетки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут передвигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом - кроцетином.

Образование каротиноидов. Синтез каротиноидов не требует света. При фор­мировании листьев каротиноиды образуются и накапливаются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. В начале освещения образование хлорофилла в этиолированных проростках сопровож­дается временным падением содержания каротиноидов. Однако затем содер­жание каротиноидов восстанавливается и даже повышается с увеличением интенсивности освещения. Установлено, что между содержанием белка и каро­тиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Образование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по срав­нению с аммиачным. Недостаток серы резко уменьшает содержание кароти­ноидов. Большое значение имеет соотношение - Ca/Mg в питательной среде. Относительное увеличение содержания кальция приводит к усиленному накоп­лению каротиноидов по сравнению с хлорофиллом. Противоположное влияние оказывает увеличение содержания магния.

7. Фикобилины

Фикобилины- красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и циа­нобактерий наряду с хлорофиллом а содержат фикобилины. В основе химическо­го строения фикобилинов лежат четыре пиррольные группировки. В отличие от хлорофилла у фикобилинов пиррольные группы расположены в виде открытой цепочки (рис. 4) . Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин - это окисленный фикоцианин. Красные водоросли в основном содержат фикоэритрин, а цианобактерий - фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилин-протеиды). Связь между фикобилинами и белками разрушается только кислотой. Предполагается, что карбоксильные группы пигмента связываются с аминогруппами белка. Необходимо отметить, что в отличие от хлорофиллов и каротиноидов, расположенных в мембранах, фикобилины концентрируются в особых гранулах (фикобилисомах), тесно связанных с мембранами тилакоидов.

Рисунок 4 – Хромофорная группа фикоэритринов

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спек­тра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495- 565 нм, а фикоцианин - 550- 615 нм. Сравнение спектров поглощения фи-кобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется процессе фотосинтеза.

Наличие фикобилинов у водорослей является примером приспособления ор­ганизмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлоро­филла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.


ФОТОСИНТЕЗ (12 часов)

Вы проходите мимо цветка?
Наклонитесь,
Поглядите на чудо,
Которое видеть вы раньше нигде не могли.
Он умеет такое, что никто на земле не умеет.
Например...
Он берет крупинку мягкой черной земли.
Затем он берет дождя дождинку,
И воздуха голубой лоскуток,
И лучик, солнышком пролитой.
Все смешает потом (но где?!)
(Где пробирок, и колб, и спиртовок ряды?),
И вот из одной и той же черного цвета земли
Он то красный, то синий,
то сиреневый, то золотой!

В. Солоухин

Публикация статьи произведена при поддержке бюро переводов «Дружба Народов». В широкий спектр предложений бюро переводов «Дружба Народов» входят услуги технического, юридического, медицинского и устного перевода на 240 языков и диалектов. Профессионализм и высокая квалификация специалистов бюро переводов «Дружба Народов», обеспечивают выполнение услуг, способных удовлетворить требованиям самого взыскательного клиента. Узнать больше о предложении бюро переводов «Дружба Народов» и получить бесплатную онлайн консультацию по интересующим Вас вопросам можно на сайте http://www.druzhbanarodov.com.ua

Пигменты. Какие они бывают

Природа наградила нас необычайным даром – цветовым зрением, а вместе с ним дала возможность восхищаться красотой окружающего растительного мира. Мы с надеждой смотрим на нежную зелень весенней листвы и с грустью любуемся желто-оранжевой гаммой осеннего леса. Кто не восхищался красками цветущего луга, лесной опушки, осенней листвы, даров сада и поля? Цвет волос мы сравниваем с золотистыми колосьями хлеба, а цвет глаз – с синими васильками. Даже сами названия цветов – оранжевый, лиловый, индиго – тоже происходят от названий растений.

Но часто ли вы задавали себе вопросы: отчего зеленые листья осенью желтеют или краснеют? Почему лепестки ромашки белые, а первые весенние листочки тополя красноватые? Почему окружающие растения окрашены именно так, а не иначе, как возникает огромное богатство цветов и оттенков? Почему цветок утром розовый, а к вечеру уже синий? Почему в одном соцветии встречаются венчики цветков с различной окраской – от белой до розовой? Можно ли приготовить краску из цветков розы, василька, ноготков, чтобы холодной зимой радоваться ярким краскам лета? Как человек может применить знания о цвете растений в повседневной жизни? Можно ли цветом лечиться?

Конечно же, если растения окрашены, значит, в них есть красители – пигменты. Растительные пигменты являются предметом исследования многих научных дисциплин. Предмет физической химии – выделение пигментов из растений и определение их химического строения, биохимия исследует процессы, приводящие к образованию окрашенных веществ, физиология изучает их локализацию и миграцию в органах растений, хемотаксономия использует наличие разных пигментов для классификации растений.

Цвет определяется способностью пигмента к поглощению света. Электромагнитные волны с длиной волны 400–700 нм составляют видимую часть солнечного излучения. Волны длиной 400–424 нм – это фиолетовый цвет, 424–491 – синий, 491–550 – зеленый, 550–585 – желтый, 585–647 – оранжевый, 647–740 нм – красный. Излучение с длиной волны меньше 400 нм – ультрафиолетовая, а с длиной волны более 740 нм – инфракрасная область спектра. Максимальное цветоразложение солнечного света приходится на 13–15 часов. Именно в это время луг, поле кажутся нам наиболее ярко и пестро расцвеченными.

Если свет, падающий на какую-нибудь поверхность, полностью от нее отражается, эта поверхность выглядит белой. Если все лучи поглощаются, поверхность воспринимается как черная. Если же поглощаются только лучи определенной длины, то отражение остальных создает ощущение цвета. Например, кожура апельсина поглощает лучи синей части спектра. И мы видим апельсин оранжевым.

Окраска не всегда обусловлена избирательным поглощением света. Так металлический цвет листьев некоторых растений объясняется преломлением света и рассеянием его с поверхности особых «оптических» чешуек или клеток. Но в большинстве случаев ответственными за окраску являются пигменты.

Растительные пигменты – это крупные органические молекулы, поглощающие свет определенной длины волны. В большинстве случаев «ответственными» за появление окраски являются определенные участки этих молекул, называемые хромофорами . Обычно хромофорный фрагмент состоит из группы атомов, объединенных в цепи или кольца с чередующимися одинарными и двойными связями (–С=С–С=С–). Чем больше таких чередующихся связей, тем глубже окраска. Кроме того, поглощение света усиливается при наличии в молекуле кольцевых структур.

В растительных клетках чаще всего встречаются зеленые пигменты хлорофиллы, красные и синие антоцианы, желтые флавоны и флавонолы, желто-оранжевые каротиноиды и темные меланины. Каждая из этих групп представлена несколькими отличающимися по химическому строению, а следовательно, по поглощению света и окраске пигментами.

А еще цвет пигмента может меняться при изменении кислотности среды, температуры, при взаимодействии с различными веществами. Поэтому важное значение имеет химический состав клеток, особенно вакуолярного сока. Наконец, окраска растения зависит и от строения ткани, в которой содержатся пигменты: ее толщины, количества межклетников, плотности находящегося на поверхности клеток воскового налета…

В растительном мире широко распространен белый цвет: белые цветки, белые стебли, белые пятна на листьях. Белый красящий пигмент называется бетулин. Накапливаясь в клетках коры молодых деревьев, бетулин окрашивает ствол березы в тот прекрасный белый цвет, которым мы все восхищаемся. Но у других растений причиной белой окраски, например венчиков, являются обширные межклетники в сочетании с клетками, лишенными пигментов. Белый цвет им придает... воздух. В этом можно убедиться несколькими способами (Опыт 1).

А что определяет окраску розовых, сиреневых, синих и фиолетовых цветков? Как это ни удивительно, но эти цвета определяет одна группа пигментов – антоцианы, впервые выделенные из цветков василька синего.

Ярко-красные розы, голубые васильки, фиолетовые анютины глазки содержат растворенные в клеточном соке антоцианы. Яблоки, вишни, виноград, черника, голубика, сок листьев и стеблей гречихи, краснокочанной капусты, листьев и корнеплодов столовой свеклы, молодая красная кора эвкалипта, красные осенние листья своим цветом тоже обязаны антоцианам. Если орган растения имеет голубой, синий, фиолетовый цвет, то нет никакого сомнения в том, что его окраска обусловлена антоцианами.

Антоцианы – это гликозиды, возникающие при соединении различных сахаров с циклическими соединениями, называемыми антоцианидинами. Содержатся антоцианы в клеточном соке (вакуолях), значительно реже – в клеточных оболочках.

В присутствии щелочи в молекулах антоцианов происходит перегруппировка двойных и ординарных связей между атомами углерода, что приводит к образованию нового хромофора – в щелочной среде антоцианы приобретают синий или сине-зеленый цвет. Поэтому их можно использовать в качестве кислотно-щелочных индикаторов (Опыт 2). При действии минеральных и органических кислот антоцианы образуют соли красного, при действии щелочей – синего цвета. На цвет антоцианов влияет также способность этих пигментов образовывать комплексные соединения с металлами.

Рассмотрим теперь желтые пигменты, которые широко распространены в мире растений, но в некоторых случаях маскируются антоцианами, хлорофиллом и поэтому менее заметны.

Группа пигментов, способных придать клетке желтый или желто-оранжевый цвет, наиболее многочисленна – это каротиноиды, флавоны, флавонолы и некоторые другие. Флавоны и флавонолы – довольно устойчивые соединения, причем некоторые из них хорошо растворимы в горячей воде. Именно поэтому флавоновые пигменты были первыми красителями, которые наши предки использовали для окраски тканей. Близки к флавонам по строению другие красители желтого цвета – халконы и ауроны. В растениях они содержатся в цветках (лепестки, рыльца пестиков), листьях, плодах. Среди известных нам растений эти пигменты можно обнаружить в листьях и цветках кислицы, кореопсиса, львиного зева. Сосредоточены они в вакуолях эпидермальных клеток. Названия этих пигментов обычно происходят от названий растений, из которых они были впервые выделены. Например, кверцетин – пигмент коры и плодов дуба.

У некоторых, немногочисленных по сравнению с «антоциановой» группой, видов растений оранжевая и красно-коричневая окраска цветков (тагетес прямостоячий, настурция большая) или плодов (томаты, шиповник, ландыш майский) обусловлена не растворенными в клеточном соке антоцианами, а находящимися преимущественно в желтых и оранжевых пластидах (хромопластах) пигментами группы каротиноидов. Название этой группе, в честь одного из пигментов, содержащихся в оранжевых корнях моркови, дал биохимик растений М.С. Цвет. Каротиноиды содержатся практически во всех органах растений: в цветках, листьях, плодах и семенах. В листьях и зеленых плодах каротиноиды находятся в хлоропластах, где маскируются хлорофиллом, и в хромопластах.

Каротиноиды нерастворимы в воде, но хорошо извлекаются из пластид органическими растворителями (бензин, спирт). Их цвет, в отличие от антоцианов, не зависит от кислотности среды. У каротиноидов невозможно выделить какой-нибудь один характерный хромофорный фрагмент, потому что их молекулы включают цепочки атомов с чередующимися ординарными и двойными связями разной длины, – цепочке каждого типа соответствует свой индивидуальный хромофор. По мере удлинения цепи окраска пигментов изменяется от желтой к красной и даже красно-фиолетовой. В молекулах оранжевых и оранжево-красных пигментов β-каротина (пигмент моркови и сладкого перца), рубиксантина (пигмент шиповника) и ликопина (пигмент помидоров) имеется 11 двойных связей, чередующихся с ординарными, а в молекулах красного виолоксантина (пигмент некоторых красных фруктов) – 13.

Каротиноиды вместе с флавоновыми пигментами придают желтый цвет листьям и венчикам цветков огурца, тыквы, одуванчика, лютиков, купальницы, калужницы, чистотела, подсолнечника, плодам кукурузы, тыквы, кабачков, баклажанов, паслена, помидора, дыни, а также многих цитрусовых. Рекордсменом по числу каротиноидных пигментов является стручковый красный перец. А вот по концентрации каротиноидов чемпионами являются плоды абрикоса, корнеплоды моркови и листья петрушки.

Обычно в венчиках растений содержатся и антоцианы, и флавоны, и флавонолы. Например, в цветках львиного зева обнаружено два вида антоцианов (пеларгонидин и цианидин), два флавонола, в том числе кверцетин и несколько флавонов, например лютеолин – пигмент анютиных глазок.

А как обстоит дело с черными пигментами? Абсолютно черного пигмента у растений нет. В кожуре красных сортов винограда, лепестках некоторых цветков, черном чае, чаге (березовый гриб) содержатся черно-коричневые пигменты группы меланинов. Но в большинстве случаев, когда речь идет о черных цветках или плодах, мы имеем дело с накоплением темно-синих антоцианов.

Плоды черники, бузины черной, крушины выглядят черными, поскольку толстый слой окрашенных клеток мякоти полностью поглощает солнечный свет.

Коричневый цвет обусловлен накоплением в клетках больших количеств желтых пигментов, часто в сочетании с окрашенными в красно-коричневые тона дубильными веществами. Например, в плодах конского каштана обыкновенного, дуба черешчатого содержится очень много желтого пигмента кверцетина.

Причиной появления коричневой и черной окраски, кроме того, могут быть бесцветные вещества из группы катехинов. При окислении особыми ферментами они полимеризуются и дают «пищевые» дубильные вещества, окрашенные в красный и коричневый цвета. Катехины хорошо растворимы в горячей воде, накапливаются в вакуолях и в большом количестве содержатся в листьях многих растений, древесине, плодах, листьях (чай).

Самым главным пигментом растений, который обусловливает их принадлежность к отдельному зеленому царству, является, конечно же, хлорофилл. Он содержится в зеленых частях растений (от 0,6 до 1,2% от массы сухого листа).

В состав молекулы хлорофилла входит ион магния. В отличие от обширных групп антоцианов, каротиноидов, флавонов и флавонолов, в клетках всех высших растений имеется только две формы хлорофилла – зеленый с синеватым оттенком, хлорофилл а и зеленый с желтоватым оттенком, хлорофилл b . Хлорофилл a характерен для всех видов фотосинтезирующих растений. Хлорофилл b присутствует в листь-ях высших растений и в большинстве водорослей. Бурые водоросли, кроме того, содержат хлорофилл с , а красные – хлорофилл d .

Значительно реже встречаются в природе протохлорофиллы и хлорофиллиды. Зеленый цвет всех перечисленных пигментов обусловлен наличием в их молекулах ажурного порфиринового цикла, связанного с ионом магния, в чем можно убедиться, проведя простой опыт (Опыт 3).

Цвет хлорофилла, как и любого окрашенного вещества, обусловлен сочетанием тех лучей, которые пигмент не поглощает. Для растворов хлорофилла максимумы поглощения расположены в сине-фиолетовой (430 нм у хлорофилла а и 450 нм у хлорофилла b ) и красной (660 нм у хлорофилла а и 650 нм у хлорофилла b ) областях спектра. Эти лучи поглощаются хлорофиллом полностью. Голубые, желтые, оранжевые лучи поглощаются в гораздо меньшей степени, и их суммарное поглощение определяется общим количеством хлорофилла. Минимум поглощения лежит в зоне зеленых лучей. Совершенно не поглощается хлорофиллом только небольшая часть красных лучей, которые в спектре расположены на границе с инфракрасной областью. Это так называемые дальние красные лучи.

Избирательное поглощение хлорофиллом лучей разной части спектра можно пронаблюдать на опыте (Опыт 4) – по мере увеличения высоты столба жидкости в пробирке наблюдается изменение окраски раствора от ярко-зеленой до вишнево-красной. Значит, правы те, кто видел в густом лесу красное свечение, исходящее из-под полога леса.

Для листьев различного возраста, различных видов растений характерно многообразие оттенков зеленого цвета. Объясняется это тем, что в формировании окраски листа принимает участие не только хлорофилл, но и другие содержащиеся в листе пигменты: желтые каротиноиды, красные антоцианы. Убедиться в разнообразии окрашивающих лист пигментов можно на опыте (Опыт 5).

Таблица. Красители из растительного материала

Цвет окрашивания

Растение

Используемая часть

Ягоды и корни

Kоричневый

Листья, кора

Лук репчатый

Ива белая

Фиолетовый

Черника и ежевика

Боярышник

Kора, побеги, листья

Зверобой

Свежая кора

Подмаренник

Бузина черная

Щавель конский

Ольха серая

Оранжевый

Чистотел

Листья и стебли

Щавель конский

Листья и стебли

Подмаренник

Kартофель

Листья и стебли

Лимонный

Барбарис

Листья и цветы

Манжетка

Стебли и листья

Трилистник

Иван-да-Марья

Зачем пигменты нужны растениям

Самая главная функция пигментов – фотосинтез. Ее осуществляет в первую очередь хлорофилл. Однако важную роль в фотосинтезе играют и некоторые каротиноиды. Они помогают молекулам хлорофилла вернуться в исходное состояние после передачи энергии и предохраняют их от фотоокисления. Используя разнообразные пигменты, растения «умудряются» использовать для фотосинтеза почти весь спектр видимого света, а также часть ультрафиолетового и инфракрасного диапазонов.

С пигментами связана светочувствительность растений, сезонная регуляция метаболизма, роста и цветения, подготовка и переход к фазе покоя, регуляция процессов прорастания семян.

Поглощая ультрафиолетовые лучи, флавоны и флавонолы предохраняют хлорофилл и цитоплазму клеток от разрушения. Очень важная функция, выполняемая каротиноидами, флавонами и антоцианами, состоит в нейтрализации свободных радикалов, нарушающих протекание биохимических процессов в растениях, т.е. эти пигменты обладают антиоксидантными свойствами.

Флавоновые пигменты иногда «применяются» растениями для самозащиты – в качестве противогрибковых или противомикробных агентов, выполняют функции резерва питательных веществ.

Пигменты, содержащиеся в лепестках, чашелистиках или листьях, окружающих соцветие, придают цветку окраску, привлекающую насекомых-опылителей. Яркая окраска – это «опознавательный знак», показывающий, где насекомые могут найти нектар и пыльцу. Бывает, что у одного и того же растения окраска цветков с возрастом изменяется. Это хорошо заметно у ранневесеннего растения медуницы: розовый цвет ее молодых цветков сменяется по мере старения синим. В этом случае смена окраски служит сигналом для насекомых – не теряйте времени даром!

Как использует растительные пигменты человек

Яркие краски растительного мира радуют наш глаз и доставляют эстетическое наслаждение. Но люди находят растительным краскам и утилитарное применение. Индиго, хна, басма, ализари (ализарин, мареновый корень) – названия этих натуральных красителей известны всем. Да и другие краски издревле получали из растительного сырья. Какого – зависело от географии. В средней полосе России, например, для окрашивания волокон и тканей в желтый цвет использовались цмин песчаный, череда трехраздельная, пупавка красильная, василек луговой, ястребинка зонтичная. В зеленые, коричневые, болотные тона окрашивает шерсть экстракт из наземной части зверобоя продырявленного; в желтые, зеленые, коричневые – вытяжка из корней укропа огородного, желтый краситель получается из молодых листьев березы.

Можно и самим получить растительную краску или чернила (Опыт 6).

Растения, богатые пигментами, находили и находят применение в медицине. Пигмент ликопин (изомер бета-каротина, придающий окраску плодам томата, арбуза и др.) обладает выраженной антиоксидантной активностью, понижает уровень холестерина в крови, повышает физическую и умственную работоспособность. Лютеин (им богаты, например, ягоды черники) вместе с образующимся из него зеаксантином - главные пигменты желтого пятна сетчатки глаза; они обладают высокой антиоксидантной и фотосенсибилизирующей активностью – защищают сетчатку глаза от разрушительного действия ультрафиолетовых лучей и преждевременного старения. Хлорофилл обладает стимулирующим и тонизирующим действием, повышает основной обмен, тонус кишечника, сердечно-сосудистой системы, дыхательного центра, стимулирует грануляцию и эпителизацию тканей, влияет на формулу крови, увеличивая количество лейкоцитов и гемоглобина, оказывает бактериостатическое действие. А еще хлорофилл усиливает иммунную функцию организма, ускоряя фагоцитоз, является предшественником витамина К, что обусловливает его использование для профилактики мочекаменной болезни, так как он сдерживает образование кристаллов оксалата кальция в моче, активизирует действие ферментов, участвующих в синтезе витаминов Е, А и К. Выводит из организма токсины, поддерживает здоровую кишечную флору, улучшает функции щитовидной и поджелудочной желез, а также действует как слабое мочегонное средство, способствует повышению лактации у кормящих матерей.

Меланиновые пигменты являются сильными антиоксидантами. Синтетический меланин в водных растворах ускоряет рост и созревание плодов, редуцирует деятельность камбия, ускоряет прорастание семян. В организме животных и человека меланины поглощают ультрафиолетовые лучи, защищая ткани глубоких слоев кожи от лучевого повреждения. Длительное введение водорастворимого меланина предотвращает язвообразование, снижает число кровоизлияний в слизистую желудка и препятствует снижению общей массы тела в условиях стресса. В процессе пищеварения меланин частично усваивается при участии микрофлоры кишечника, частично исполняет роль энтеросорбента, регулятора перистальтики, нормализует состав кишечной микрофлоры. Является активным антидотом при острых отравлениях, эффективно выводит из пищеварительного тракта токсины на ранней стадии отравления до их всасывания в кровь. Возможно применение меланина при лечении и профилактике онкологических заболеваний.

Хну (краску, получаемую из листьев кустарника лавсония) используют не только для окраски волос, которые становятся более жесткими, густыми и пышными, но и как бактерицидное средство. Препараты хны (мази и растворы красящих веществ) применяются при потении ног, при экземе, для лечения гнойных ран.

Растительные биофлавоноиды, представляющие собой группу биологически активных веществ (рутин, катехины, кверцетин, цитрин, гесперидин, эриодиктиол, цианидин) называют витамином Р . Всего известно около 150 биофлавоноидов. Особенно много их в цитрусовых, черной смородине, плодах шиповника, щавеле, зеленом чае, салате. Выделенный, например, из кожуры лимона этот витамин уменьшал ломкость и проницаемость капилляров. Этот витамин не вырабатывается нашим организмом и поэтому должен быть включен в ежедневный рацион питания.

Желтый флавиновый пигмент рибофлавин известен как витамин В2, а каротиноид ретинол – как витамин А.

Таблица 1. Растительные красители для пищевых продуктов

№ кода

Названия пищевых добавок

Curcumins (куркумины)

Riboflavins (рибофлавины)

Tartazine (тартразин)

Sunset Yellow FCF (желтый «солнечный закат»)

Azorubine (азорубин)

Ponceau (понсо 4R, пунцовый 4R)

Patent Blue V (синий патентованный)

Caramel (сахарный колер)

Carotines (каротины)

Beet red (красный свекольный)

Anthoceanins (антоцианы)

Не все пигменты обладают фармакологическим действием. Но все они нетоксичны и отлично подходят для окрашивания продуктов питания. В таком произведении кулинарного искусства, как торт, белковый нежирный крем окрашен в желтый цвет флавоновыми пигментами, вся гамма цветов от красного до синего обеспечивается антоцианами, красивый фиолетовый цвет – это бетацианин из свеклы, а зеленый, конечно же, появляется благодаря хлорофиллам. Жирный крем окрашен в желтый, оранжевый и красный цвета каротиноидами. А вот синих жирорастворимых пигментов у растений нет, поэтому если масляный крем имеет ярко-синий цвет, значит, использовался синтетический краситель.

Говорить о пользе растительных пигментов и о значении их для нас можно бесконечно. Вот еще интересный пример – на способности растений менять окраску в зависимости от химического состава почвы основан биогеохимический метод поиска месторождений полезных ископаемых… «Ну и что?» – спросит кто-то. Да ничего… Просто, глядя на сочную зелень растений, пестрый ковер цветов, самодовольную красноту помидоров на дачном участке, подумайте о том, что все вокруг нас не случайно, все взаимосвязано, подумайте о том, как прекрасен, гармоничен и изумителен мир, в котором мы все живем.

Практикум

Опыт 1. Почему лепестки цветков белые?

Цель: убедиться в том, что белый цвет лепестков фиалки, ромашки, белой лилии и других цветов обусловлен не наличием красящего вещества, а развитой системой межклетников.

1. Рассмотрите под микроскопом лепесток белого цветка фиалки.

2. Удалите воздух из межклетников. Это можно сделать несколькими способами.

А. Осторожно сожмите лепесток пальцами. Воздух из межклетников выходит, и лепесток становится бесцветным и прозрачным, как лед.

Б. Погрузите лепестки в воду. Через несколько часов, когда вода через устьица проникнет в межклетники, лепестки станут бесцветными.

В. Лепестки поместите в шприц (без иглы) и заполните его водой. Установив шприц наконечником вверх, задвиньте поршень, чтобы вытеснить воздух. После этого закройте пальцем отверстие наконечника и отведите поршень вниз. В результате создавшегося разрежения из лепестков в воду начнут выделяться пузырьки воздуха. Через 1–2 мин воздух из межклетников выйдет. Вновь вдвиньте поршень в шприц – вода поступит в межклетники, и лепесток станет прозрачным.

3. Рассмотрите под микроскопом лепесток цветка фиалки, ставший прозрачным после опыта. Воздушные межклетники исчезли.

Вывод: белый цвет лепестков цветов обусловлен развитой системой межклетников.

Опыт 2. Изучение индикаторных свойств антоцианов

Антоцианы – водорастворимые пигменты. Их водную вытяжку можно получить из свеклы, из листьев краснокочанной капусты или из лепестков цветков с цветовой гаммой от розовой до фиолетовой. Для этого 0,5–1 г растительного вещества надо поместить в ступку и измельчить с небольшим количеством хорошо промытого песка, добавить около 5 мл воды и отфильтровать получившийся раствор. В зависимости от вида растения такая вытяжка может быть голубого, синего, фиолетового, розового, малинового цвета.

Антоцианы также содержатся в свекольном соке и соке плодов многих растений: смородины, черноплодной рябины, вишни, малины.

В чистую пробирку налейте 2–3 мл вытяжки пигментов, добавьте 1–2 капли разбавленной кислоты. Если полученная вытяжка антоцианов имела первоначально буроватую окраску, то после добавления капель кислоты она примет красивый розово-красный цвет. Изменения окраски связаны с перестройками в молекуле антоциана.

Определите рН раствора с помощью индикаторной бумаги и добавляйте по каплям разбавленную щелочь или немного, на самом кончике ножа, порошка питьевой соды. Пронаблюдайте за изменением окраски раствора по мере изменения рН. Цикл изменения окраски антоциановых растворов под действием кислот и щелочей можно повторить несколько раз.

Испытайте индикаторные свойства растворов антоцианов, выделенных из разных растений. (Растворы пигментов быстро портятся, поэтому их лучше хранить в холодильнике и готовить непосредственно перед опытом.) Вывод: антоцианы изменяют окраску в зависимости от рН среды, их водные растворы можно использовать в качестве кислотно-щелочных индикаторов.

Таблица 2. Изменения окраски водной вытяжки антоцианов различных растений в кислой и щелочной среде

Растение

Цвет раствора исходный

Цвет раствора в кислой среде

Цвет раствора в щелочной среде

Фиалка узамбарская

светло-синий

бледно-розовый

ярко-желтый

Земляника садовая (плоды)

ярко-розовый с красным

оранжевый

Львиный зев (красный)

красно-коричневый

бледно-розовый

Львиный зев (желтый)

бледно-розовый

Базилик (фиолетовый)

темно-желтый

бледно-зеленый

желто-коричневый

светло-голубой

бледно-розовый

бледно-желтый

Смородина черная (сок плодов)

фиолетово-синий

темно-красный

темно-желтый

Смородина красная (сок плодов)

ярко-красный

ярко-желтый

Малина (сок плодов)

ярко-розовый с малиновым

ярко-розовый

ярко-зеленый, затем желтый

Свекла (сок корнеплодов)

свекольный

ярко-красный

ярко-сине-зеленый, затем темно-желтый

Вишня обыкновенная (сок плодов)

вишневый

ярко-зеленый, затем ярко-желтый

Черноплодная рябина (сок плодов)

коричнево-красный

грязно-красный

грязно-желтый

Зигокактус (декабрист)

светло-малиновый

бледно-розовый

Краснокочанная капуста

малиновый с сиреневым

ярко-розовый

синий, затем зеленый, затем желтый

Опыт 3. Доказательство влияния магния на цвет хлорофилла

Характерное для хлорофилла поглощение света определяется химической структурой его молекулы. Система сопряженных двойных связей играет большую роль в поглощении сине-фиолетовых лучей. Присутствие магния в ядре молекулы обусловливает поглощение в красной области. Нарушение структуры, например удаление из молекулы магния, приводит к изменению цвета хлорофилла. Удалить из хлорофилла магний можно, проделав реакцию взаимодействия хлорофилла с кислотой.

Для работы понадобятся свежие листья злаков или комнатных растений, 95% этиловый спирт, фарфоровая ступка с пестиком, воронка и фильтровальная бумага, 10% раствор соляной кислоты, уксуснокислый цинк, спиртовка, пипетка, 4 пробирки.

Осторожно! Не забывайте о правилах работы с концентрированными кислотами!

Сначала надо получить спиртовую вытяжку пигментов листа. Для этого к измельченным листьям (для опыта достаточно 1–2 листьев пеларгонии) добавьте 5–10 мл этилового спирта, на кончике ножа порошок СаСО3 (мел) для нейтрализации кислот клеточного сока и разотрите в фарфоровой ступке до однородной зеленой массы. Прилейте еще этилового спирта и осторожно продолжайте растирание, пока спирт не окрасится в интенсивно зеленый цвет. Полученную спиртовую вытяжку отфильтруйте в чистую сухую пробирку или колбу.

Рассмотрите полученный раствор хлорофилла в проходящем свете (он имеет зеленый цвет) и в отраженном свете (вишнево-красный – явление флуоресценции). Если добавить к вытяжке (в отдельной пробирке) несколько капель воды и встряхнуть, то прозрачный раствор хлорофилла мутнеет (явление флуоресценции исчезает).

Перенесите по 2–3 мл спиртовой вытяжки пигментов в три чистые пробирки. Одна из пробирок контрольная, в две другие добавьте по 2–3 капли раствора соляной кислоты. Цвет раствора меняется на бурый: в результате взаимодействия с кислотой магний в молекуле хлорофилла замещается двумя атомами водорода и образуется вещество бурого цвета – феофитин. Одну из пробирок с феофитином оставьте для контроля, а в другую внесите на кончике ножа уксуснокислый цинк и нагрейте на водяной бане до кипения. Атом цинка замещает атомы водорода (заместившие ранее магний) в молекуле хлорофилла и бурый цвет раствора вновь меняется на зеленый.

Вывод: цвет хлорофилла зависит от наличия металлоорганической связи в его молекуле.

Опыт 4. Изучение зависимости цвета вытяжки пигментов листа от количества хлорофилла

В этом опыте свет должен проходить через раствор хлорофилла снизу вверх – нам понадобится источник света, который можно разместить под пробиркой. Это может быть положенная горизонтально настольная лампа без абажура, осветитель для аквариума, мощный фонарь и т.п. Кроме того, нужно приготовить темно-зеленую спиртовую вытяжку пигментов листа, как указано в опыте 3.

Высокую пробирку оберните черной бумагой, чтобы свет не попадал на раствор сбоку, и поместите ее над источником света. Смотрите в пробирку сверху и добавляйте в нее небольшими порциями раствор хлорофилла.

Пока вытяжки в пробирке немного, ее цвет изумрудно-зеленый – за счет поглощения в первую очередь лучей сине-фиолетовой и красной областей спектра. Голубые, желтые и оранжевые лучи поглощаются в очень небольшой степени. Однако по мере увеличения количества вытяжки в пробирке суммарное количество поглощенного света в этих областях (сначала в голубой и желтой областях спектра, а затем и зеленых лучей) возрастает. На определенном этапе остаются непоглощенными только дальние красные лучи, и раствор в пробирке приобретает вишнево-красный цвет.

Вывод: хлорофилл поглощает лучи большей части видимого спектра, но интенсивность поглощения разных лучей неодинакова. Суммарное поглощение зависит от общего количества хлорофилла.

Опыт 5. Разделение смеси спирторастворимых пигментов

Приготовим спиртовую вытяжку пигментов листа (Опыт 3). Вытяжка имеет зеленый цвет, но на самом деле в ней, помимо хлорофиллов, содержатся и желтые пигменты группы каротиноидов – каротин и ксантофилл. Убедиться в этом можно несколькими способами.

На фильтровальную бумагу нанесите стеклянной палочкой каплю полученной спиртовой вытяжки пигментов листа. Через 3–5 мин на бумаге образуются цветные концентрические круги: в центре зеленый (хлорофилл), снаружи – желтый (каротиноиды).

Полоску фильтровальной бумаги шириной примерно в 1 см и длиной 20 см погрузите одним концом в пробирку с вытяжкой. Через несколько минут на бумаге появится зеленая полоса хлорофилла, а выше нее – желтые полосы каротиноидов (каротина и ксантофилла). В зеленой зоне можно различить две полосы: зеленую (хлорофилл а) и зелено-желтую (хлорофилл b).

Разделение пигментов обусловлено их различной адсорбцией (поглощением в поверхностном слое) на фильтровальной бумаге и неодинаковой растворимостью в растворителе, в данном случае – этиловом спирте. Каротиноиды хуже, по сравнению с хлорофиллом, адсорбируются на фильтровальной бумаге, передвигаются по ней дальше хлорофилла.

На различной растворимости пигментов в разных растворителях основан еще один способ их разделения. Для этой работы нам понадобится чистый (для заправки зажигалок) бензин.

Осторожно! Не забывайте о правилах работы с огнеопасными жидкостями!

В пробирку налейте 2–3 мл спиртовой вытяжки пигментов листа, добавьте столько же бензина и 1–2 капли воды. Закройте пробирку пробкой (можно и большим пальцем), энергично взболтайте в течение 2–3 мин и дайте отстояться.

Жидкость в пробирке разделится на два слоя: более легкий бензин наверху, спирт – внизу. Спирт будет окрашен в желтый цвет пигментом ксантофиллом, который в бензине не растворяется. Бензиновый слой будет зеленым за счет растворенного в нем хлорофилла. На самом деле там же, в бензиновом слое, содержится и каротин, но его цвет маскируется интенсивно зеленым цветом хлорофилла.

Чтобы убедиться в том, что в бензиновом слое действительно присутствует пигмент каротин, нам понадобится 20% раствор гидроксида натрия или гидроксида калия.

Осторожно! Не забывайте о правилах работы с концентрированной щелочью!

По химическому строению хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина и двух спиртов: метилового и фитола. При взаимодействии сложных эфиров со щелочами происходит реакция омыления – разрыв сложноэфирных связей с образованием соли данной кислоты и спиртов. В результате реакции омыления хлорофилла образуется натриевая или калиевая соль хлорофиллина, метиловый спирт и фитол.

Налейте в пробирку 2–3 мл спиртовой вытяжки пигментов, добавьте 4–5 капель 20% раствора щелочи, закройте пробирку пробкой (в данном случае именно пробкой, не пальцем!), взболтайте. Происходит реакция взаимодействия хлорофилла со щелочью. Цвет раствора не меняется, так как хлорофиллины натрия и калия имеют зеленую окраску.

Добавьте в пробирку бензин в таком количестве, чтобы общий объем жидкости в пробирке увеличился в два раза, взболтайте и дайте отстояться. Жидкость в пробирке разделится на два слоя – внизу спирт, наверху – более легкий бензин.

Нижний спиртовой слой окрасится в зеленый цвет благодаря присутствию в нем соли – хлорофиллина натрия, которая, в отличие от хлорофилла, в бензине нерастворима. Здесь же, в спиртовом слое, находится пигмент ксантофилл, но его окраска маскируется интенсивно зеленым цветом натриевой соли хлорофиллина. Верхний слой бензина будет окрашен в желтый цвет пигментом каротином.

Вывод: спиртовая вытяжка листа содержит хлорофилл и два желтых пигмента – каротин и ксантофилл. Цвет листа растения в первую очередь зависит от количественного соотношения этих пигментов, а также от возможного присутствия пигментов группы антоцианов.

В продолжение работы интересно взять для анализа экстракты листьев разного цвета – разных видов растений и разного возраста. Взрослые сформировавшиеся листья содержат больше хлорофилла, чем молодые. Старые листья содержат больше желтых пигментов. Поэтому окраска листа изменяется с возрастом: от желто-зеленой у молодых до интенсивно зеленой у взрослых и желтой у опадающих осенних листьев.

Опыт 6. Получение растительных красителей

I. Получение красителя из луковой шелухи

Экстракт шелухи лука широко применяется для окрашивания пищевых продуктов и тканей в желто-коричневый цвет.

Для работы понадобятся железо-аммонийные квасцы [(NH 4)2SO 4 × Fe 2 (SO 4) 3 × 24 H 2 O] и сульфат железа (II).

1. 100 г луковой шелухи залейте на 30–35 мин 1 л теплой воды, добавьте 1 чайную ложку питьевой соды и прокипятите 1,5 ч на слабом огне, слегка помешивая.

2. Экстракт слейте, а шелуху лука еще раз залейте небольшим количеством воды и прокипятите в течение часа. Снова слейте экстракт, смешайте с полученной ранее порцией и дайте отстояться. Для увеличения концентрации красителя полученный экстракт можно упарить.

Для получения стойкого окрашивания нужно использовать протравитель (4 г квасцов или 1 г сульфата железа на 2 л воды). Окраску можно проводить тремя способами:

а) с предварительным протравливанием: окрашиваемый материал прокипятите 15–20 мин в растворе протравителя, затем переложите в холодный раствор красителя и прокипятите 45–60 мин;

б) с одновременным протравливанием: раствор протравителя добавьте к раствору красителя, опустите туда окрашиваемый материал и, все время его переворачивая, доведите до кипения;

в) с последующим протравливанием: материал прокипятите около 1 ч в отваре красителя, затем добавьте в раствор протравитель и кипятите еще 40 мин.

3. Окрашенную ткань или пряжу прополощите в теплой воде, в которую добавлено немного столового уксуса.

При кипячении в экстракте из луковой шелухи материал постепенно окрасится в темно-коричневый цвет. При одновременном использовании квасцов или сульфата железа (II) материал окрасится в черный цвет.

Другие варианты окрашивания с помощью растительных материалов приведены в таблице 3.

Таблица 3. Окраска растительными красителями с протравой

II. Получение чернил из растительного материала

Некоторые виды растительного сырья, богатого дубильными веществами, могут быть использованы в качестве чернил. Для работы понадобится сульфат железа (II).

1. Приготовьте 20% водный раствор сульфата железа (II).

2. Залейте 2 г сухого чайного листа 50 мл горячей воды и нагревайте 30–40 мин на кипящей водяной бане.

3. Раствор отфильтруйте, к осадку добавьте еще 20–25 мл воды, прокипятите и снова отфильтруйте. Фильтраты объедините и упарьте до объема 8–10 мл.

4. К 2 мл теплого фильтрата добавьте 0,5–1 мл 20% раствора сульфата железа (II) до появления черного цвета. Чтобы загустить чернила, добавьте 1–2 г сахарного песка.

Вместо чая можно использовать другое сырье, богатое дубильными веществами: дубовую кору, корни лапчатки прямостоячей или щавеля курчавого, плоды конского каштана обыкновенного или бузины черной. Такого материала для работы понадобится 50–100 г.

Опыт 7. Изготовление самодельной индикаторной бумаги

Лучшими индикаторными свойствами обладает вытяжка из листьев краснокочанной капусты. Исходно она имеет малиново-сиреневый цвет. В сильнокислой среде (рН 2–3) приобретает красный, а при рН 4–5 – розовый цвет. Далее по мере нейтрализации розово-красный цвет изменяется сначала на сиреневый, затем на светло-синий (рН 6–7). При переходе значений рН в щелочную область цвет раствора становится зеленым (рН 8), желто-зеленым (рН 9–10) и в сильно щелочной среде (рН выше 10) – желтым.

Пропитав этой вытяжкой полоски фильтровальной бумаги и высушив их, можно получить хорошую индикаторную бумагу для достаточно точного определения рН растворов в кислой области. Чтобы приготовить индикатор на щелочь (красную индикаторную бумагу) вытяжку краснокочанной капусты перед пропитыванием фильтровальной бумаги нужно предварительно подкислить 1–2 каплями уксуса до появления розовой окраски.

Индикаторные свойства красителя из краснокачанной капусты сходны с лакмусом: область перехода окраски лежит в интервале рН 3–12. Для более точного определения рН раствора нужно составить цветную шкалу изменений окраски этого индикатора.

Полученную индикаторную бумагу можно использовать для определения рН различных веществ и кислотности почвы (табл. 4).

Таблица 4. Изменение окраски индикатора из краснокочанной капусты в растворах бытовых веществ

Вещество

Цвет индикатора

рН среды

Зубная паста «Colgate»

Светло-синий

Зубная паста «Aquarelle»

Светло-голубой

Чистящий порошок «Дени», «Миф»

Тёмно-синий

Чистящий порошок «Dosia»

Чистящий порошок «Тайд»

Светло-синий

Чистящее средство «Lock»

Не изменился

Чистящее средство «Oven cleaner», фирма «Amwei»

Насыщенно тёмно-синий цвет, практически чёрный

Мыло «Детское», «Тик-так»

Светло-синий

Мыло «Dove»

Не изменился

Яблочный сок (самодельный)

Ярко-розовый

Альбуцид (глазные капли)

Ярко-синий

Почва для фиалок

Слабый светло-голубой, более тёмный по краям

Почва универсальная овощная

Слабый светло-голубой

Почва универсальная для цветов

Не изменился

Снег около лесных посадок

Не изменился

Снег вблизи проезжей части

Светло-розовый

Литература

Артамонов В.И. Занимательная физиология растений. – М.: Агропромиздат, 1991.
Бердоносов С.С., Бердоносов П.С. Справочник по общей химии. – М.: АСТ Астрель, 2002.
Головко Т.К. Дыхание растений (физиологические аспекты). – СПб: Наука, 1999.
Детская энциклопедия. – М.: Академия педагогических наук РСФСР, 1959.
Заленский О.В. Эколого-физиологические аспекты изучения фотосинтеза / Тимирязевские чтения. – Л.: Наука, 1977. Вып. 37. 57 с.
Лебедева Т.С., Сытник К.М. Пигменты растительного мира. – Киев: Наукова думка, 1986.
Ольгин О. Опыты без взрыва. – М.: Химия, 1986.
Пчелов А.М. Природа и ее жизнь. – Л.: Жизнь, 1990.
Эткинс П. Молекулы. – М.: Мир, 1991.

Фото М. и О.Бариновых