Изготовление фотонных кристаллов. Фотонные кристаллы будут основой для нового поколения микроэлектроники

Необычным свойствам фотонных кристаллов посвящено огромное количество работ, а в последнее время и монографий. Напомним, что фотонными кристаллами называют такие искусственные среды, в которых благодаря периодическому изменению диэлектрических параметров (имеется в виду показатель преломления) свойства распространяющихся электромагнитных волн (света) становятся аналогичными свойствам электронов, распространяющихся в реальных кристаллах. Соответственно термин "фотонный кристалл" подчёркивает сходство фотонов и электронов. Квантование свойств фотонов приводит к тому, что в спектре электромагнитной волны, распространяющейся в фотонном кристалле, могут возникать запрещённые зоны, в которых плотность состояний фотонов равна нулю.

Трёхмерный фотонный кристалл с абсолютной запрещённой зоной был впервые реализован для электромагнитных волн СВЧ-диапазона. Существование абсолютной запрещённой зоны означает, что электромагнитные волны в определённой полосе частот не могут распространяться в данном кристалле в любом направлении, так как плотность состояния фотонов, энергия которых соответствует этой полосе частот, равна нулю в любой точке кристалла. Как и реальные кристаллы, фотонные по наличию и свойствам запрещённой зоны могут представлять собой проводники, полупроводники, изоляторы и сверхпроводники. Если в запрещённой зоне фотонного кристалла существуют "дефекты", то возможен "захват" фотона "дефектом", аналогично тому, как происходит захват электрона или дырки соответствующей примесью, находящейся в запрещённой зоне полупроводника.

Такие распространяющиеся волны с энергией, расположенной внутри запрещённой зоны, называются дефектными модами.

фотонный кристалл метаматериал преломление

Как уже отмечалось, необычные свойства фотонного кристалла наблюдаются, когда размеры элементарной ячейки кристалла порядка длины распространяющейся в нём волны. Понятно, что идеальные фотонные кристаллы видимого диапазона света можно изготовить лишь с помощью субмикронных технологий. Уровень современной науки и техники позволяет создавать такие трёхмерные кристаллы.

Применения фотонных кристаллов достаточно многочисленны - оптические изоляторы, оптические вентили, переключатели, мультиплексоры и т.д. Одной из чрезвычайно важных, с практической точки зрения, структур являются фотонно-кристаллические оптические волокна. Они впервые были изготовлены из набора стеклянных капилляров, собранных в плотную пачку, которая затем подвергалась обычной вытяжке. В результате получилось оптоволокно, содержащее регулярно расположенные отверстия с характерным размером около 1 мкм. В дальнейшем были получены оптические фотонно-кристаллические световоды разнообразной конфигурации и с различными свойствами (рис. 9).

В Институте радиотехники и электроники и в Научном центре волоконной оптики РАН был разработан новый метод сверления для создания фотонно-кристаллических световодов. Сначала в кварцевой толстой заготовке просверливались механические отверстия с любой матрицей, а затем заготовка подвергалась вытяжке. В результате было получено фотонно-кристаллическое волокно высокого качества. В таких световодах легко создавать дефекты разнообразной формы и размера, так что в них можно возбуждать одновременно несколько мод света, частоты которых лежат в запрещённой зоне фотонного кристалла. Дефекты, в частности, могут иметь вид пустотелого канала, так что свет будет распространяться не в кварце, а по воздуху, что может существенно снизить потери на длинных участках фотонно-кристаллических световодов. Распространение видимого и инфракрасного излучения в фотонно-кристаллических световодах сопровождается разнообразными физическими явлениями: комбинационным рассеянием, смешением гармоник, генерацией гармоник, что в конечном итоге приводит к генерации суперконтинуума.

Не менее интересны, с точки зрения исследования физических эффектов и возможных применений, одно- и двумерные фотонные кристаллы. Строго говоря, эти структуры не являются фотонными кристаллами, однако они могут считаться таковыми при распространении электромагнитных волн в определённых направлениях. Типичный одномерный фотонный кристалл - это многослойная периодическая структура, состоящая из слоев по крайней мере двух веществ с сильно различающимися показателями преломления. Если электромагнитная волна распространяется вдоль нормали, в такой структуре возникает запрещённая зона для определённых частот. Если один из слоев структуры заменить веществом с отличным от других показателем преломления или изменить толщину одного слоя, то такой слой будет дефектом, способным захватить волну, частота которой находится в запрещённой зоне.

Наличие магнитного дефектного слоя в диэлектрической немагнитной структуре приводит к многократному увеличению фарадеевского вращения волны при распространении в такой структуре и к усилению оптической прозрачности среды.

Вообще говоря, присутствие магнитных слоев в фотонных кристаллах может существенно изменить их свойства, прежде всего в СВЧ-диапазо-не. Дело в том, что в СВЧ-диапазоне магнитная проницаемость ферромагнетиков в определённой полосе частот отрицательная, что облегчает их применение при создании метаматериалов. Сопрягая такие вещества с металлическими немагнитными слоями или структурами, состоящими из отдельных проводников либо периодических структур проводников, можно изготовить структуры с отрицательными значениями магнитной и диэлектрической проницаемости. Примером могут служить созданные в Институте радиотехники и электроники РАН структуры, предназначенные для обнаружения "отрицательного" отражения и преломления магнитостатических спиновых волн. Такая структура представляет собой плёнку железо-иттриевого граната с металлическими проводниками на её поверхности. Свойства магнитостатических спиновых волн, распространяющихся в тонких ферромагнитных плёнках, сильно зависят от внешнего магнитного поля. В общем случае один из типов таких волн, является обратной волной, так что скалярное произведение волнового вектора на вектор Пойн-тинга у этого типа волн отрицательное.

Существование обратных волн в фотонных кристаллах обусловлено и периодичностью свойств самого кристалла. В частности, для волн, волновые векторы которых лежат в первой зоне Бриллю-эна, может выполняться условие распространения как для прямых волн, а для тех же волн во второй зоне Бриллюэна - как для обратных. Подобно метаматериалам, в фотонных кристаллах также могут обнаруживаться необычные свойства в распространяющихся волнах, например "отрицательное" преломление.

Однако фотонные кристаллы могут быть тем метаматериалом, для которого возможно явление "отрицательного" преломления не только в СВЧ-диапазоне, но и в оптическом диапазоне частот. Эксперименты подтверждают факт существования "отрицательного" преломления в фотонных кристаллах для волн с частотами, выше частоты первой запрещённой зоны вблизи центра зоны Бриллюэна. Это обусловлено эффектом отрицательной групповой скорости и, как следствие, отрицательного коэффициента преломления для волны. Фактически в этой области частот волны становятся обратными.

В последнее десятилетие развитие микроэлектроники затормозилось, поскольку уже практически достигнуты ограничения по быстродействию стандартных полупроводниковых устройств. Все большее число исследований посвящается разработке альтернативных полупроводниковой электронике областей - это спинтроника, микроэлектроника со сверхпроводящими элементами, фотоника и некоторые другие.

Новый принцип передачи и обработки информации с помощью светового, а не электрического сигнала может ускорить наступление нового этапа информационного века.

От простых кристаллов к фотонным

Основой электронных устройств будущего могут стать фотонные кристаллы - это синтетические упорядоченные материалы, в которых диэлектрическая проницаемость периодически меняется внутри структуры. В кристаллической решетке традиционного полупроводника регулярность, периодичность расположения атомов приводит к образованию так называемой зонной энергетической структуры - с разрешенными и запрещенными зонами. Электрон, энергия которого попадает в разрешенную зону, может передвигаться по кристаллу, а электрон с энергией в запрещенной зоне оказывается «запертым».

По аналогии с обычным кристаллом возникла идея кристалла фотонного. В нем периодичность диэлектрической проницаемости обуславливает возникновение фотонных зон, в частности, запрещенной, в пределах которой распространение света с определенной длиной волны подавлено. То есть, будучи прозрачными для широкого спектра электромагнитного излучения, фотонные кристаллы не пропускают свет с выделенной длиной волны (равной удвоенному периоду структуры по длине оптического пути).

Фотонные кристаллы могут иметь различную размерность. Одномерные (1D) кристаллы представляют собой многослойную структуру из чередующихся слоев с разными показателями преломления. Двумерные фотонные кристаллы (2D) можно представить в виде периодической структуры из стержней с разной диэлектрической проницаемостью. Первые синтетические прообразы фотонных кристаллов были трехмерными и созданы еще в начале 1990-х годов сотрудниками исследовательского центра Bell Labs (США). Для получения периодической решетки в диэлектрическом материале американские ученые высверливали цилиндрические отверстия таким образом, чтобы получить трехмерную сеть пустот. Для того, чтобы материал стал фотонным кристаллом, его диэлектрическая проницаемость была модулирована с периодом в 1 сантиметр во всех трех измерениях.

Природными аналогами фотонных кристаллов являются перламутровые покрытия раковин (1D), усики морской мыши, многощетинкового червя (2D), крылья африканской бабочки парусника и полудрагоценные камни, например, опал (3D).

Но и сегодня, даже с помощью самых современных и дорогостоящих методов электронной литографии и анизотропного ионного травления, с трудом удается изготовить бездефектные трехмерные фотонные кристаллы с толщиной более 10 структурных ячеек.

Фотонные кристаллы должны найти широкое применение в фотонных интегральных технологиях, которые в перспективе заменят электрические интегральные схемы в компьютерах. При передаче информации с использованием фотонов вместо электронов резко сократится энергопотребление, увеличатся тактовые частоты и скорость передачи информации.

Фотонный кристалл из оксида титана

Оксид титана TiO 2 обладает набором уникальных характеристик, таких как высокий показатель преломления, химическая стабильность и низкая токсичность, что делает его наиболее перспективным материалом для создания одномерных фотонных кристаллов. Если рассматривать фотонные кристаллы для солнечных батарей, то здесь оксид титана выигрывает из-за своих полупроводниковых свойств. Ранее было продемонстрировано увеличение КПД солнечных элементов при использовании слоя полупроводника с периодической структурой фотонного кристалла, в том числе фотонных кристаллов из оксида титана.

Но пока применение фотонных кристаллов на основе диоксида титана ограничивается отсутствием воспроизводимой и недорогой технологии их создания.

Сотрудники химического факультета и факультета наук о материалах МГУ - Нина Саполетова, Сергей Кушнир и Кирилл Напольский - усовершенствовали синтез одномерных фотонных кристаллов на основе пористых пленок оксида титана.

«Анодирование (электрохимическое окисление) вентильных металлов, в том числе алюминия и титана, является эффективным методом получения пористых оксидных пленок с каналами нанометрового размера», - пояснил руководитель группы электрохимического наноструктурирования, кандидат химических наук Кирилл Напольский.

Анодирование обычно проводят в двухэлектродной электрохимической ячейке. В раствор электролита опускают две металлические пластины - катод и анод, и подают электрическое напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла. Если периодически менять прикладываемое к ячейке напряжение, то на аноде формируется пористая пленка с заданной по толщине пористостью.

Эффективный показатель преломления будет модулироваться, если диаметр пор будет периодически меняться внутри структуры. Разработанные ранее методики анодирования титана не позволяли получать материалы с высокой степенью периодичности структуры. Химики из МГУ разработали новый способ анодирования металла с модуляцией напряжения в зависимости от заряда анодирования, который позволяет с высокой точностью создавать пористые анодные оксиды металлов. Возможности новой методики химики продемонстрировали на примере одномерных фотонных кристаллов из анодного оксида титана.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40–60 Вольт ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся внутренним диаметром (см. рисунок).

«Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры. Мы разработали новую методику, ключевым составляющим которой является in situ (непосредственно во время синтеза) измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоев с различной пористостью в формируемой оксидной пленке», - пояснил один из авторов работы, кандидат химических наук Сергей Кушнир.

Разработанная методика упростит создание новых материалов с модулированной структурой на основе анодных оксидов металлов. «Если в качестве практического использования методики рассматривать применение в солнечных батареях фотонных кристаллов из анодного оксида титана, то еще предстоит провести систематическое исследование влияния структурных параметров таких фотонных кристаллов на эффективность преобразования света в солнечных батареях», - уточнил Сергей Кушнир.

Рис. 2. Схематическое представление одномерного фотонного кристалла.

1. одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении как показано на Рис. 2. На этом рисунке символом Λ обозначен период изменения коэффициента преломления, и - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.

Рис. 3. Схематическое представление двумерного фотонного кристалла.

2. двухмерные, в которых коэффициент преломления периодически изменяется в двух пространственных направлениях как показано на Рис. 3. На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления , которые находятся в среде с коэффициентом преломления . При этом, области с коэффициентом преломления упорядочены в двумерной кубической решетке . Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т. д.). Кристаллическая решётка , в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке.

3. трёхмерные, в которых коэффициент преломления периодически изменяется в трёх пространственных направлениях. Такие фотонные кристаллы могут проявлять свои свойства в трёх пространственных направлениях, и можно их представить как массив объёмных областей (сфер, кубов и т. д.), упорядоченных в трёхмерной кристаллической решётке.

Как и электрические среды в зависимости от ширины запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники - способные проводить свет на большие расстояния с малыми потерями, диэлектрики - практически идеальные зеркала, полупроводники - вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники , в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния.

Также различают резонансные и нерезонансные фотонные кристаллы . Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.

Любая неоднородность в фотонном кристалле (например, отсутствие одного или нескольких квадратов на Рис. 3, их больший или меньший размер относительно квадратов оригинального фотонного кристалла и т. д.) называются дефектом фотонного кристалла. В таких областях часто сосредотачивается электромагнитное поле , что используется в микрорезонаторах и волноводах , построенных на основе фотонных кристаллов.

Методы теоретического исследования фотонных кристаллов, численные методы и программное обеспечение

Фотонные кристаллы позволяют проводить манипуляции с электромагнитными волнами оптического диапазона, причём характеристические размеры фотонных кристаллов часто близки к величине длины волны. Поэтому к ним не применимы методы лучевой теории, а используется волновая теория и решение уравнений Максвелла . Уравнения Максвелла могут быть решены аналитически и численно, но именно численные методы решения используются для исследования свойств фотонных кристаллов наиболее часто по причине их доступности и лёгкой подстройки под решаемые задачи.

Уместно также упомянуть, что используется два основных подхода к рассмотрению свойств фотонных кристаллов - методы для временной области (которые позволяют получить решение задачи в зависимости от временной переменной), и методы для частотной области (которые предоставляют решение задачи в виде функции от частоты) .

Методы для временной области удобны в отношении динамических задач, которые предусматривают временную зависимость электромагнитного поля от времени. Они также могут быть использованы для расчёта зонных структур фотонных кристаллов, однако практически сложно бывает выявить положение зон в выходных данных таких методов. Кроме того, при расчёте зонных диаграмм фотонных кристаллов используется преобразование Фурье , частотное разрешение которого, зависит от общего времени расчёта метода. То есть для получения большего разрешения в зонной диаграмме нужно потратить больше времени на выполнение расчётов. Есть ещё и другая проблема - временной шаг таких методов должен быть пропорционален размеру пространственной сетки метода. Требование увеличения частотного разрешения зонных диаграмм требует уменьшения временного шага, а следовательно и размера пространственной сетки, увеличения числа итераций, требуемой оперативной памяти компьютера и времени расчёта. Такие методы реализованы в известных коммерческих пакетах моделирования Comsol Multiphysics (используется метод конечных элементов для решения уравнений Максвелла) , RSOFT Fullwave (использует метод конечных разностей) , самостоятельно разработанные исследователями программные коды для методов конечных элементов и разностей и др.

Методы для частотной области удобны прежде всего тем, что решение уравнений Максвелла происходит сразу для стационарной системы и непосредственно из решения определяются частоты оптических мод системы, это позволяет быстрее рассчитывать зонные диаграммы фотонных кристаллов, чем с использованием методов для временной области. К их достоинствам можно отнести число итераций, которое практически не зависит от разрешения пространственной сетки метода и то, что ошибка метода численно спадает экспоненциально с числом проведённых итераций. Недостатками метода являются необходимость расчёта собственных частот оптических мод системы в низкочастотной области для того, чтобы рассчитать частоты в более высокочастотной области, и естественно, невозможность описания динамики развития оптических колебаний в системе. Данные методы реализованы в бесплатном пакете программ MPB и коммерческом пакете . Оба упомянутых программных пакета не могут рассчитывать зонные диаграммы фотонных кристаллов, в которых один или несколько материалов имеют комплексные значения коэффициента преломления. Для исследования таких фотонных кристаллов используется комбинация двух пакетов компании RSOFT - BandSolve и FullWAVE, либо используется метод возмущения

Безусловно, теоретические исследования фотонных кристаллов не ограничиваются только расчётом зонных диаграмм, а также требуют и знаний о стационарных процессах при распространении электромагнитных волн через фотонные кристаллы. Примером может служить задача исследования спектра пропускания фотонных кристаллов. Для таких задач можно использовать оба упомянутых выше подхода исходя из удобства и их доступности, а также методы матрицы переноса излучения , программа для расчёта спекторов пропускания и отражения фотонных кристаллов использующая данный метод , программный пакет pdetool который входит в состав пакета Matlab и упомянутый уже выше пакет Comsol Multiphysics.

Теория фотонных запрещённых зон

Как выше уже отмечалось, фотонные кристаллы позволяют получить разрешённые и запрещённые зоны для энергий фотонов, аналогично полупроводниковым материалам , в которых существуют разрешённые и запрещённые зоны для энергий носителей заряда. В литературном источнике появление запрещённых зон объясняется тем, что при определённых условиях, интенсивности электрического поля стоячих волн фотонного кристалла с частотами близкими к частоте запрещённой зоны, смещаются в разные области фотонного кристалла. Так, интенсивности поля низкочастотных волн концентрируется в областях с большим коэффициентом преломления, а интенсивности поля высокочастотных - в областях с меньшим коэффициентом преломления. В работе встречается другое описание природы запрещённых зон в фотонных кристаллах: «фотонными кристаллами принято называть среды, у которых диэлектрическая проницаемость периодически меняется в пространстве с периодом, допускающим брэгговскую дифракцию света».

Если излучение с частотой запрещённой зоны было сгенерировано внутри такого фотонного кристалла, то оно не может распространяться в нём, если же такое излучение посылается извне, то оно просто отражается от фотонного кристалла. Одномерные фотонные кристаллы, позволяют получить запрещённые зоны и фильтрующие свойства для излучения, распространяющегося в одном направлении, перпендикулярном слоям материалов, показанных на Рис. 2. Двухмерные фотонные кристаллы могут иметь запрещённые зоны для излучения, распространяющегося как в одном, двух направлениях, так и во всех направлениях данного фотонного кристалла, которые лежат в плоскости Рис. 3. Трёхмерные фотонные кристаллы могут иметь запрещённые зоны как в одном, нескольких или всех направлениях. Запрещённые зоны существуют для всех направлений в фотонном кристалле при большой разнице показателей преломления материалов, из которых состоит фотонный кристалл, определённых формах областей с разными показателями преломления и определённой кристаллической симметрии .

Число запрещённых зон, их положение и ширина в спектре зависит как от геометрических параметров фотонного кристалла (размер областей с разным показателем преломления, их форма, кристаллическая решётка, в которой они упорядочены) так и от показателей преломления. Поэтому, запрещённые зоны могут быть перестраиваемыми, например вследствие применения нелинейных материалов с выраженным эффектом Керра , вследствие изменения размеров областей с разным показателем преломления или же вследствие изменения показателей преломления под воздействием внешних полей .

Рис. 5. Зонная диаграмма для энергий фотонов (ТЕ поляризация).

Рис. 6. Зонная диаграмма для энергий фотонов (ТМ поляризация).

Рассмотрим зонные диаграммы фотонного кристалла, показанного на Рис. 4. Этот двумерный фотонный кристалл состоит из двух чередующихся в плоскости материалов - арсенида галлия GaAs (основной материал, показатель преломления n=3,53, области чёрного цвета на рисунке) и воздуха (которым наполнены цилиндрические отверстия, обозначены белым цветом, n=1). Отверстия имеют диаметр и упорядочены в гексагональной кристаллической решётке с периодом (расстоянием между центрами соседних цилиндров) . В рассматриваемом фотонном кристалле отношение радиуса отверстий к периоду равно . Рассмотрим зонные диаграммы для ТЕ (вектор электрического поля направлен параллельно осям цилиндров) и ТМ (вектор магнитного поля направлен параллельно осям цилиндров) показанные на Рис. 5 и 6, которые были рассчитаны для данного фотонного кристалла при помощи бесплатной программы MPB . По оси X отложены волновые векторы в фотонном кристалле, по оси Y отложена нормированная частота, ( - длина волны в вакууме) соответствующая энергетическим состояниям. Синие и красные сплошные кривые на этих рисунках представляют собой энергетические состояния в данном фотонном кристалле для ТЕ и ТМ поляризованных волн соответственно. Голубые и розовые области показывают запрещённые зоны для фотонов в данном фотонном кристалле. Чёрные прерывистые линии - это так называемые световые линии (или световой конус) данного фотонного кристалла . Одна из основных областей применения данных фотонных кристаллов - оптические волноводы, и световая линия определяет область, внутри которой располагаются волноводные моды волноводов, построенных с помощью таких фотонных кристаллов, обладающие малыми потерями. Другими словами, световая линия определяет зону интересующих нас энергетических состояний данного фотонного кристалла. Первое, на что стоит обратить внимание - данный фотонный кристалл имеет две запрещённых зоны для ТЕ-поляризованных волн и три широких запрещённых зоны для ТМ-поляризованных волн. Второе - запрещённые зоны для ТЕ и ТМ-поляризованных волн, лежащие в области малых значений нормированной частоты , перекрываются, а значит, данный фотонный кристалл обладает полной запрещённой зоной в области перекрытия запрещённых зон ТЕ и ТМ волн не только во всех направлениях, но и для волн любой поляризации (ТЕ или ТМ).

Рис. 7. Спектр отражения рассматриваемого фотонного кристалла (ТЕ поляризация).

Рис. 8. Спектр отражения рассматриваемого фотонного кристалла (ТМ поляризация).

Из приведённых зависимостей мы можем определить геометрические параметры фотонного кристалла, первая запрещённая зона которого с значением нормированной частоты , приходится на длину волны нм. Период фотонного кристалла равен нм, радиус отверстий равен нм. Рис. 7 и 8 показывают спектры коэффициента отражения фотонного кристалла с параметрами, определёнными выше для ТЕ и ТМ волн соответственно. Спектры были рассчитаны при помощи программы Translight , при этом предполагалось что данный фотонный кристалл состоит из 8 пар слоёв отверстий и излучение распространяется в направлении Γ-Κ. Из приведённых зависимостей мы можем видеть наиболее известное свойство фотонных кристаллов - электромагнитные волны с собственными частотами, соответствующими запрещённым зонам фотонного кристалла (Рис.5 и 6), характеризуются коэффициентом отражения, близким к единице и подвергаются практически полному отражению от данного фотонного кристалла. Электромагнитные волны с частотами вне запрещённых зон данного фотонного кристалла характеризуются меньшими коэффициентами отражения от фотонного кристалла и полностью или частично проходят через него.

Изготовление фотонных кристаллов

В настоящее время существует множество методов изготовления фотонных кристаллов, и новые методы продолжают появляться. Некоторые методы больше подходят для формирования одномерных фотонных кристаллов, другие удобны в отношении двумерных, третьи применимы чаще к трёхмерным фотонным кристаллам, четвёртые используются при изготовлении фотонных кристаллов на других оптических устройствах и т. д. Рассмотрим наиболее известные из этих методов.

Методы, использующие самопроизвольное формирование фотонных кристаллов

При самопроизвольном формировании фотонных кристаллов используются коллоидальные частицы (чаще всего используются монодисперсные силиконовые или полистереновые частицы, но и другие материалы постепенно становятся доступными для использования по мере разработки технологических методов их получения ), которые находятся в жидкости и по мере испарения жидкости осаждаются в некотором объёме . По мере их осаждения друг на друга, они формируют трёхмерный фотонный кристалл, и упорядочиваются преимущественно в гранецентрированную или гексагональную кристаллические решетки. Этот метод достаточно медленный, формирование фотонного кристалла может занять недели.

Другой метод самопроизвольного формирования фотонных кристаллов, называемый сотовым методом, предусматривает фильтрование жидкости, в которой находятся частицы через маленькие поры. Этот метод представлен в работах , позволяет сформировать фотонный кристалл со скоростью, определённой скоростью течения жидкости через поры, но при высыхании такого кристалла образуются дефекты в кристалле .

Выше уже отмечалось, что в большинстве случаев требуется большой контраст коэффициента преломления в фотонном кристалле для получения запрещённых фотонных зон во всех направлениях. Упомянутые выше методы самопроизвольного формирования фотонного кристалла чаще всего применялись для осаждения сферических коллоидальных частиц силикона, коэффициент преломления которого мал, а значит мал и контраст коэффициента преломления. Для увеличения этого контраста, используется дополнительные технологические шаги, на которых сначала пространство между частицами заполняется материалом с большим коэффициентом преломления, а затем частицы вытравливаются . Пошаговый метод формирования инверсного опала описан в методическом указании по выполнению лабораторной работы .

Методы травления

Голографические методы

Голографические методы создания фотонных кристаллов базируются на применении принципов голографии , для формирования периодического изменения коэффициента преломления в пространственных направлениях. Для этого используется интерференция двух или более когерентных волн, которая создает периодическое распределение интенсивности электрического поля . Интерференция двух волн позволяет создавать одномерные фотонные кристаллы, трёх и более лучей - двухмерные и трёхмерные фотонные кристаллы .

Другие методы создания фотонных кристаллов

Однофотонная фотолитография и двухфотонная фотолитография позволяют создавать трёхмерные фотонные кристаллы с разрешением 200нм и использует свойство некоторых материалов, таких как полимеры , которые чувствительны к одно- и двухфотонному облучению и могут изменять свои свойства под воздействием этого излучения . Литография при помощи пучка электронов является дорогим, но высокоточным методом для изготовления двумерных фотонных кристаллов В этом методе, фоторезист, который меняет свои свойства под действием пучка электронов облучается пучком в определённых местах для формирования пространственной маски. После облучения, часть фоторезиста смывается, а оставшаяся часть используется как маска для травления в последующем технологическом цикле. Максимальное разрешение этого метода - 10нм . Литография при помощи пучка ионов похожа по своему принципу, только вместо пучка электронов используется пучок ионов. Преимущества литографии при помощи пучка ионов над литографией при помощи пучка электронов заключаются в том, что фоторезист более чувствителен к пучкам ионов, чем электронов и отсутствует «эффект близости» («proximity effect»), который ограничивает минимально возможный размер области при литографии при помощи пучка электронов .

Применение

Распределённый брэгговский отражатель является уже широко используемым и известным примером одномерного фотонного кристалла.

С фотонными кристаллами связывают будущее современной электроники . В данный момент идёт интенсивное изучение свойств фотонных кристаллов, разработка теоретических методов их исследования, разработка и исследование различных устройств с фотонными кристаллами, практическая реализация теоретически предсказанных эффектов в фотонных кристаллах, и предполагается, что:

Исследовательские группы в мире

Исследования фотонных кристаллов проводятся в множестве лабораторий институтов и компаний, занимающихся электроникой. Например:

  • Московский государственный технический университет имени Н. Э. Баумана
  • Московский государственный университет имени М. В. Ломоносова
  • Институт радиотехники и электроники РАН
  • Днепропетровский национальный университет имени Олеся Гончара
  • Сумской Государственный университет

Источники

  1. стр. VI в книге Photonic Crystals, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Springer 2005.
  2. Е. Л. Ивченко, А. Н. Поддубный, "Резонансные трёхмерные фотонные кристаллы, "Физика твёрдого тела, 2006, том 48, вып. 3, стр. 540-547.
  3. В. А. Кособукин, "Фотонные кристаллы, «Окно в Микромир», No. 4, 2002.
  4. Photonic Crystals: Periodic Surprises in Electromagnetism
  5. CNews, Фотонные кристаллы первыми изобрели бабочки.
  6. S. Kinoshita, S. Yoshioka and K. Kawagoe "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale, " Proc. R. Soc. Lond. B, Vol. 269, 2002, pp. 1417-1421.
  7. http://ab-initio.mit.edu/wiki/index.php/MPB_Introduction Steven Johnson, MPB manual.
  8. Пакет программ для решения физических задач.
  9. http://www.rsoftdesign.com/products/component_design/FullWAVE/ Пакет программ для решения электродинамических задач RSOFT Fullwave.
  10. Программный пакет для расчёта зонных диаграмм фотонных кристаллов MIT Photonic Bands.
  11. Пакет программ для расчёта зонных диаграмм фотонных кристаллов RSOFT BandSolve.
  12. A. Reisinger, "Characteristics of optical guided modes in lossy waveguides, " Appl. Opt., Vol. 12, 1073, p. 1015.
  13. M.H. Eghlidi, K. Mehrany, and B. Rashidian, "Improved differential-transfer-matrix method for inhomogeneous one-dimensional photonic crystals, " J. Opt. Soc. Am. B, Vol. 23, No. 7, 2006, pp. 1451-1459.
  14. Программа Translight, разработчики: Andrew L. Reynolds, the Photonic Band Gap Materials Research Group within the Optoelectronics Research Group of the Department of Electronics and Electrical Engineering, the University of Glasgow and the initial program originators from Imperial College, London, Professor J.B. Pendry, Professor P.M. Bell, Dr. A.J. Ward and Dr. L. Martin Moreno.
  15. Матлаб - язык технических расчётов.
  16. стр. 40, J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, 1995.
  17. стр. 241, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  18. стр. 246, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  19. D. Vujic and S. John, "Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching, " Physical Review A, Vol. 72, 2005, p. 013807.
  20. http://www3.interscience.wiley.com/cgi-bin/fulltext/114286507/PDFSTART J. Ge, Y. Hu, and Y. Yin, "Highly Tunable Superparamagnetic Colloidal Photonic Crystals, " Angewandte Chemie International Edition, Vol. 46, No. 39, pp. 7428-7431.
  21. A. Figotin, Y.A. Godin, and I. Vitebsky, "Two-dimensional tunable photonic crystals, " Physical Review B, Vol. 57, 1998, p. 2841.
  22. MIT Photonic-Bands package, developed by Steven G. Johnson at MIT along with the Joannopoulos Ab Initio Physics group.
  23. http://www.elettra.trieste.it/experiments/beamlines/lilit/htdocs/people/luca/tesihtml/node14.html Fabrication and Characterization of Photonic Band Gap Materials.
  24. P. Lalanne, «Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone, IEEE J. of Quentum Electronics, Vol. 38, No. 7, 2002, pp. 800-804.»
  25. A. Pucci, M. Bernabo, P. Elvati, L.I. Meza, F. Galembeck, C.A. de P. Leite, N. Tirelli, and G. Ruggeriab, "Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers, " J. Mater. Chem., Vol. 16, 2006, pp. 1058-1066.
  26. A. Reinholdt, R. Detemple, A.L. Stepanov, T.E. Weirich, and U. Kreibig, "Novel nanoparticle matter: ZrN-nanoparticles, " Applied Physics B: Lasers and Optics, Vol. 77, 2003, pp. 681-686.
  27. L. Maedler, W.J. Stark, and S.E. Pratsinisa, «Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2,» J. Mater. Res., Vol. 18, No. 1, 2003, pp. 115-120.
  28. K.K. Akurati, R. Dittmann, A. Vital, U. Klotz, P. Hug, T. Graule, and M. Winterer, "Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis, " Journal of Nanoparticle Research, Vol. 8, 2006, pp. 379-393.
  29. стр. 252, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004
  30. A.-P. Hynninen, J.H.J. Thijssen, E.C.M. Vermolen, M. Dijkstra, and A. van Blaaderen, "Self-assembly route for photonic crystals with a bandgap in the visible region, " Nature Materials 6, 2007, pp. 202-205.
  31. X. Ma, W. Shi, Z. Yan, and B. Shen, "Fabrication of silica/zinc oxide core-shell colloidal photonic crystals, " Applied Physics B: Lasers and Optics, Vol. 88, 2007, pp. 245-248.
  32. S.H. Park and Y. Xia, "Assembly of Mesoscale Particles over Large Areas and Its Application in Fabricating Tunable Optical Filters, " Langmuir, Vol. 23, 1999, pp. 266-273.
  33. S.H. Park, B. Gates, Y. Xia, "A Three-Dimensional Photonic Crystal Operating in the Visible Region, " Advanced Materials, 1999, Vol. 11, pp. 466-469.
  34. стр. 252, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  35. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals, " Nature, Vol. 414, No. 6861, p. 289.
  36. стр. 254, P.N. Prasad, Nanophotonics, John Wiley and Sons, 2004.
  37. M. Cai, R. Zong, B. Li, and J. Zhou, "Synthesis of inverse opal polymer films, " Journal of Materials Science Letters, Vol. 22, No. 18, 2003, pp. 1295-1297.
  38. R. Schroden, N. Balakrishan, «Inverse opal photonic crystals. A laboratory guide», University of Minnesota.
  39. Virtual cleanroom, Georgia Institute of Technology.
  40. P. Yao, G.J. Schneider, D.W. Prather, E. D. Wetzel, and D.J. O’Brien, "Fabrication of three-dimensional photonic crystals with multilayer photolithography, " Optics Express, Vol. 13, No. 7, 2005, pp. 2370-2376.

Реферат

Изготовление фотонных кристаллов

Создание трехмерного фотонного кристалла в видимом интервале длин волн остается на протяжении последних десяти лет одной из главных задач материаловедения, для решения которой большинство исследователей сосредоточились на двух принципиально разных подходах: использование темплатных методов, создающих предпосылки для самоорганизации синтезируемых наносистем, и нанолитографии.

Среди первой группы методов наибольшее распространение получили такие, которые в качестве темплатов для создания твердых тел с периодической системой пор используют монодисперсные коллоидные сферы. Эти методы позволяют получить фотонные кристаллы на основе металлов, неметаллов, оксидов, полупроводников, полимеров, и т.д. Все указанные методы включают несколько общих этапов (рис. 22).

Рис. 22. Схема темплатного синтеза фотонных кристаллов

На первом этапе, близкие по размерам коллоидные сферы равномерно “упаковывают” в виде трехмерных (иногда двухмерных) каркасов, которые в дальнейшем выступают в качестве темплатов (рис. 22а). Для упорядочения сфер помимо естественного (спонтанного) осаждения используются центрифугирование, фильтрование с использованием мембран и электрофорез. При этом, в случае использования кварцевых сфер получающийся материал является синтетическим аналогом природного опала.

На втором этапе, пустоты в темплатной структуре пропитывают жидкостью, которая впоследствии при различных физико-химических воздействиях превращается в твердый каркас. Другими методами заполнения веществом пустот темплата являются либо электрохимические методы, либо метод CVD (рис. 22б).

На последнем этапе, темплат (коллоидные сферы) удаляют, используя в зависимости от его природы процессы растворения или термического разложения (рис. 22в). Получающиеся структуры часто называют обратными репликами исходных коллоидных кристаллов или “обратными опалами”.

Очевидно, что сферы, используемые в качестве темплатов для формирования пористых твердых тел, должны смачиваться наносимыми прекурсорами, а также должны быть легко удаляемы в условиях, при которых создаваемая каркасная структура не разрушается. Кроме того, чтобы конечный пористый материал обладал фотонными свойствами, сферы должны иметь узкое распределение по размерам: их диаметры не должны отличаться от среднего размера более чем на 5-8%.

Темплатный каркас, состоящий из упорядоченных монодисперсных коллоидных частиц, в литературе принято называть “коллоидным кристаллом” (colloidalcrystal) (см. рис 22а). Как правило, для их формирования используются кварцевые или полимерные латексные сферы, хотя в литературе описаны случаи применения эмульсионных капель, золота и монодисперсных полупроводниковых нанокристаллов.

Для практического использования бездефектные области в фотонном кристалле не должны превышать 1000 мкм 2 . Поэтому проблема упорядочения кварцевых и полимерных сферических частиц является одной из важнейших при создании фотонных кристаллов.

Осаждение коллоидных частиц только под действием сил гравитации моделирует естественный механизм образования природного опала. Поэтому этот метод был подробно изучен уже достаточно давно. В процессе длительного отстаивания происходит разделение частиц по размерам, что позволяет получать хорошо упорядоченные образцы синтетических опалов, даже если используемые кварцевые сферы имеют значительный разброс по размерам.

Однако, естественное осаждение – очень медленный процесс, как правило, требующий нескольких недель или даже месяцев, особенно в том случае, когда диаметр сфер не превышает 300 нм. Центрифугирование позволяет значительно ускорить процесс формирования коллоидных кристаллов. Однако, полученные в таких условиях материалы упорядочены хуже, так как при высокой скорости осаждения разделение частиц по размерам не успевает произойти. При этом, как было показано в работе, на качество получающегося опала сильное влияние оказывает скорость центрифугирования.

Так, при осаждении сферических кварцевых частиц диаметром 375-480 нм наиболее хорошо упорядоченные коллоидные кристаллы были получены при центрифугировании со скоростью 4000 об./мин, при скоростях 3000 и 5000 об./мин образцы были упорядочены значительно хуже.

Рис. 23. Влияние электрофореза на осаждение крупных кварцевых сферических частиц диаметром 870 нм: а) – электрофорез не применяется; б) – электрофорез применяется.

Метод естественного осаждения связан с рядом сложностей. Если размеры кварцевых сфер достаточно малы (< 300 нм), они могут не образовать осадка, поскольку энергия теплового движения становится сопоставимой с энергией гравитационного поля. С другой стороны, при осаждении крупных сфер (диаметром > 550 нм) скорость их осаждения настолько велика, что получить упорядоченные массивы становится затруднительно, а при последующем увеличении размеров сфер – практически невозможно.

В связи с этим для увеличения скорости седиментации малых сфер и уменьшения – больших использовали электрофорез. В этих экспериментах вертикальное электрическое поле (в зависимости от его направления) в одних случаях “увеличивало”, а в других – “понижало” силу тяжести, действующую на частицы. Как и ожидалось, чем медленнее проводили процесс осаждения, тем более упорядоченными получались образцы. Например, в работе было показано, что при естественном осаждении кварцевых частиц диаметром 870 нм формируется коллоидный кристалл с полностью неупорядоченной структурой (рис. 23а). Использование же электрофореза позволяет получать достаточно хорошо упорядоченный материал (рис. 23б). При осаждении кварцевых частиц диаметром 205 нм использование электрофореза значительно увеличивало скорость седиментации (от 0,09 в случае естественного осаждения до 0,35 мм/ч). В результате коллоидный кристалл образовывался не за 2 месяца, а менее чем за две недели, причем ухудшения оптических свойств не происходило.

Другим способом упорядочения коллоидных сфер является метод осаждения на мембранах. Так, в работах полимерные коллоидные кристаллы были получены фильтрованием суспензии, содержащей, в основном, латексные сферы диаметром 300-1000 нм, через ровную поликарбонатную мембрану с порами размером ~100 нм, которые задерживали крупные, пропуская растворитель и более мелкие сферы.

В последнее время большое распространение получили метод упорядочения коллоидных сфер, связанный с использованием капиллярных сил. Показано, что кристаллизация субмикронных частиц на границе мениска между вертикальной подложкой и коллоидной суспензией по мере испарения последней приводит к образованию тонкой, плоской, хорошо упорядоченной структуры. В то же время, считалось, что использование этого метода для получения коллоидных кристаллов на основе частиц диаметром > 400 нм невозможно, поскольку осаждение крупных частиц под действием силы тяжести, как правило, происходит быстрее, чем движение мениска вдоль подложки вследствие испарения растворителя. Это создает определенные проблемы для коммерческих приложений метода: фотонные кристаллы в важнейшем для современных средств связи диапазоне длин волн 1,3-1,5 мкм формируются на основе сфер с диаметрами в интервале 700-900 нм.

Эту проблему решили, применяя градиент температур, инициирующий конвекцию: конвекционные потоки замедляют седиментацию, ускоряют испарение и приводят к непрерывному току сферических частиц к мениску (рис. 24). Так, используя этот метод, удалось добиться упорядочения кварцевых сфер диаметром 0,86 мкм на силиконовой подложке. Необходимо подчеркнуть, что материал получаемой структуры характеризовался значительно меньшей концентрацией точечных дефектов, а сами кварцевые коллоидные кристаллы были значительно крупнее, чем удавалось получать ранее.

Простой метод получения коллоидных кристаллов, не требующий экстремальных условий проведения эксперимента: упорядочение полистирольных сферических частиц происходящий на поверхности воды только за счет подъема температуры суспензии до 90°C. В ходе эксперимента, латексные сферы диаметром 240 нм оставались в растворе во взвешенном состоянии при постоянной температуре более 2 месяцев. Из-за непрерывно протекающего испарения раствора, концентрация коллоидных частиц на его поверхности, по-видимому, значительно возрастает, что приводит к их самоорганизации (под действием капиллярных сил) в упорядоченные области.

Рис. 24 . Метод упорядочения крупных кварцевых сфер на поверхности вертикальной подложки, использующий действие капиллярных сил и градиента температур.

Расчеты показали, что плотность “организованных” сфер становится меньше плотности воды, поэтому они не тонут. В процессе дальнейшего испарения воды к первичному кластеру пристраивается следующий упорядоченный слой и т.д. Именно малая разность между плотностью воды (1 г/см 3) и полистирола (1,04 г/см 3) позволяет получать коллоидные кристаллы на поверхности раствора. Действительно, при экспериментировании с метанолом (имеющий значительно меньшую плотность ρ = 0,79 г/см 3), образование упорядоченных структур не происходит.

Методы, использующие самопроизвольное формирование фотонных кристаллов

При самопроизвольном формировании фотонных кристаллов используются коллоидальные частицы (чаще всего используются монодисперсные силиконовые или полистереновые частицы, но и другие материалы постепенно становятся доступными для использования по мере разработки технологических методов их получения), которые находятся в жидкости и по мере испарения жидкости осаждаются в некотором объеме. По мере их осаждения друг на друга, они формируют трехмерный фотонный кристалл, и упорядочиваются преимущественно в гранецентрированную или гексагональную кристаллические решетки. Этот метод достаточно медленный, формирование фотонного кристалла может занять недели.

Илья Полищук, доктор физико-математических наук, профессор МФТИ, ведущий научный сотрудник НИЦ "Курчатовский институт"


Применение микроэлектроники в системах обработки информации и связи коренным образом изменило мир. Не вызывает сомнений, что последствия бума научно-исследовательских работ в области физики фотонных кристаллов и устройств на их основе будут сравнимы по значимости с созданием интегральной микроэлектроники более полувека назад. Материалы нового типа позволят создавать оптические микросхемы по "образу и подобию" элементов полупроводниковой электроники, а принципиально новые способы передачи, хранения и обработки информации, отрабатываемые сегодня на фотонных кристаллах, в свою очередь, найдут применение в полупроводниковой электронике будущего. Неудивительно, что эта область исследований — одна из самых горячих в крупнейших мировых научных центрах, высокотехнологичных компаниях и на предприятиях военно-промышленного комплекса. Россия, конечно же, не является исключением. Более того, фотонные кристаллы — предмет эффективного международного сотрудничества. В качестве примера сошлемся на более чем десятилетнее сотрудничество российского ООО "Кинтех лаб" с известной американской фирмой General Electric.

История фотонных кристаллов


Исторически сложилось так, что теория рассеяния фотонов на трехмерных решетках начала интенсивно развиваться с области длин волн?~0,01-1 нм, лежащих в рентгеновском диапазоне, где узлами фотонного кристалла являются сами атомы. В 1986 году Эли Яблонович из университета Калифорнии в Лос-Анджелесе высказал идею создания трехмерной диэлектрической структуры, подобной обычным кристаллам, в которой не могли бы распространяться электромагнитные волны определенной полосы спектра. Такие структуры получили название фотонных структур с запрещенной зоной (photonic bandgap) или фотонных кристаллов. Через 5 лет такой фотонный кристалл был изготовлен путем сверления миллиметровых отверстий в материале с высоким показателем преломления. Такой искусственный кристалл, получивший впоследствии название яблоновит, не пропускал излучение миллиметрового диапазона и фактически реализовывал фотонную структуру с запрещенной зоной (кстати, к тому же классу физических объектов можно отнести и фазированные антенные решетки).

Фотонные структуры, в которых запрещено распространение электромагнитных (в частности, оптических) волн в некоторой полосе частот в одном, двух или трех направлениях, могут использоваться для создания оптических интегральных устройств управления этими волнами. В настоящее время идеология фотонных структур лежит в основе создания беспороговых полупроводниковых лазеров, лазеров на основе редкоземельных ионов, резонаторов с высокой добротностью, оптических волноводов, спектральных фильтров и поляризаторов. Исследование фотонных кристаллов проводится сейчас более чем в двух десятках стран, в том числе и в России, и количество публикаций в этой области, как и число симпозиумов и научных конференций и школ, растет экспоненциально.

Для понимания процессов, происходящих в фотонном кристалле, его можно сравнить с кристаллом полупроводника, а распространение фотонов с движением носителей заряда — электронов и дырок. Например, в идеальном кремнии атомы расположены в алмазоподобной кристаллической структуре, и, согласно зонной теории твердого тела, заряженные носители, распространяясь по кристаллу, взаимодействуют с периодическим потенциалом поля атомных ядер. Это является причиной образования разрешенных и запрещенных зон — квантовая механика запрещает существование электронов с энергиями, соответствующими энергетическому диапазону, называемому запрещенной зоной. Аналогично обычным кристаллам, фотонные кристаллы содержат высокосимметричную структуру элементарных ячеек. Причем, если структура обычного кристалла определяется положениями атомов в кристаллической решетке, то структура фотонного кристалла определяется периодической пространственной модуляцией диэлектрической постоянной среды (масштаб модуляции сопоставим с длиной волны взаимодействующего излучения).

Фотонные проводники, изоляторы, полупроводники и сверхпроводники


Продолжая аналогию, фотонные кристаллы можно разделить на проводники, изоляторы, полупроводники и сверхпроводники.

Фотонные проводники обладают широкими разрешенными зонами. Это прозрачные тела, в которых свет пробегает большое расстояние, практически не поглощаясь. Другой класс фотонных кристаллов — фотонные изоляторы — обладает широкими запрещенными зонами. Такому условию удовлетворяют, например широкодиапазонные многослойные диэлектрические зеркала. В отличие от обычных непрозрачных сред, в которых свет быстро затухает, превращаясь в тепло, фотонные изоляторы свет не поглощают. Что же касается фотонных полупроводников, то они обладают более узкими по сравнению с изоляторами запрещенными зонами.

Волноводы на основе фотонных кристаллов используются для изготовления фотонного текстиля (на фотографиях). Такой текстиль только появился, и даже область его применения до конца еще не осознана. Из него можно изготовить, например интерактивную одежду, а можно мягкий дисплей

Фото: emt-photoniccrystal.blogspot.com

Несмотря на то, что идея фотонных зон и фотонных кристаллов утвердилась в оптике лишь за последние несколько лет, свойства структур со слоистым изменением коэффициента преломления давно известны физикам. Одним из первых практически важных применений таких структур стало изготовление покрытий с уникальными оптическими характеристиками, применяемых для создания высокоэффективных спектральных фильтров и снижения нежелательного отражения от оптических элементов (такая оптика получила название просветленной) и диэлектрических зеркал с коэффициентом отражения, близким к 100%. В качестве другого хорошо известного примера 1D-фотонных структур можно упомянуть полупроводниковые лазеры с распределенной обратной связью, а также оптические волноводы с периодической продольной модуляцией физических параметров (профиля или коэффициента преломления).

Что касается обычных кристаллов, то природа нам дарит их весьма щедро. Фотонные же кристаллы в природе — большая редкость. Поэтому, если мы хотим использовать уникальные свойства фотонных кристаллов, мы вынуждены разработать различные методы их выращивания.

Как вырастить фотонный кристалл


Создание трехмерного фотонного кристалла в видимом интервале длин волн остается на протяжении последних десяти лет одной из первоочередных задач материаловедения, для решения которой большинство исследователей сосредоточились на двух принципиально разных подходах. В одном из них использовуется метод затравочного шаблона (template) — темплатный метод. В этом методе создаются предпосылки для самоорганизации синтезируемых наносистем. Второй метод — нанолитография.

Среди первой группы методов наибольшее распространение получили такие, которые в качестве темплатов для создания твердых тел с периодической системой пор используют монодисперсные коллоидные сферы. Эти методы позволяют получить фотонные кристаллы на основе металлов, неметаллов, оксидов, полупроводников, полимеров, и т.д. На первом этапе, близкие по размерам коллоидные сферы равномерно "упаковывают" в виде трехмерных (иногда двухмерных) каркасов, которые в дальнейшем выступают в качестве темплатов аналогом природного опала. На втором этапе, пустоты в темплатной структуре пропитывают жидкостью, которая впоследствии при различных физико-химических воздействиях превращается в твердый каркас. Другими методами заполнения веществом пустот темплата являются либо электрохимические методы, либо метод CVD (Chemical Vapor Deposition — осаждение из газовой фазы).

На последнем этапе, темплат (коллоидные сферы) удаляют, используя в зависимости от его природы процессы растворения или термического разложения. Получающиеся структуры часто называют обратными репликами исходных коллоидных кристаллов или "обратными опалами".

Для практического использования бездефектные области в фотонном кристалле не должны превышать 1000 мкм2. Поэтому проблема упорядочения кварцевых и полимерных сферических частиц является одной из важнейших при создании фотонных кристаллов.

Во второй группе методов однофотонная фотолитография и двухфотонная фотолитография позволяют создавать трехмерные фотонные кристаллы с разрешением 200нм и использует свойство некоторых материалов, таких как полимеры, которые чувствительны к одно- и двухфотонному облучению и могут изменять свои свойства под воздействием этого излучения. Литография при помощи пучка электронов является дорогим, но выскоточным методом для изготовления двумерных фотонных кристаллов. В этом методе, фоторезист, который меняет свои свойства под действием пучка электронов, облучается пучком в определенных местах для формирования пространственной маски. После облучения, часть фоторезиста смывается, а оставшаяся часть используется как маска для травления в последующем технологическом цикле. Максимальное разрешение этого метода — 10нм. Литография при помощи пучка ионов похожа по своему принципу, только вместо пучка электронов используется пучок ионов. Преимущества литографии при помощи пучка ионов над электронной литографией заключаются в том, что фоторезист более чувствителен к пучкам ионов, чем электронов и отсутствует "эффект близости" (proximity effect), который ограничивает минимально возможный размер области при литографии при помощи пучка электронов.

Упомянем также некоторые другие способы выращивания фотонных кристаллов. К ним относятся методы самопроизвольного формирования фотонных кристаллов, методы травления, голографические методы.

Фотонное будущее


Заниматься предсказаниями столь же опасно, сколь заманчиво. Однако прогнозы о будущем фотонно-кристаллических устройств весьма оптимистичны. Область использования фотонных кристаллов практически неисчерпаема. В настоящее время на мировом рынке уже появились (или появятся в ближайшее время) устройства или материалы использующие уникальные особенности фотонных кристаллов. Это лазеры с фотонными кристаллами (низкопороговые и беспороговые лазеры); волноводы, основанные на фотонных кристаллах (они более компактны и обладают меньшими потерями по сравнению с обычными волокнами); материалы с отрицательным показателем преломления, дающие возможность фокусировать свет в точку размерами меньше длины волны; мечта физиков — суперпризмы; оптические запоминающие и логические устройства; дисплеи на основе фотонных кристаллов. Фотонные кристаллы будут осуществлять и манипуляцию цветом. Уже разработан гнущийся крупноформатный дисплей на фотонных кристаллах с высоким спектральным диапазоном — от инфракрасного излучения до ультрафиолетового, в котором каждый пиксель представляет собой фотонный кристалл — массив кремневых микросфер, располагающихся в пространстве строго определенным образом. Создаются фотонные суперпроводники. Такие суперпроводники могут применяться для создания оптических датчиков температуры, которые, в свою очередь, будут работать с большими частотами и совмещаться с фотонными изоляторами и полупроводниками.

Человек еще только планирует технологическое использование фотонных кристаллов, а морская мышь (Aphrodite aculeata) уже давно применяет их на практике. Мех этого червя обладает столь ярко выраженным явлением иризации, что способен селективно отражать свет с эффективностью, близкой к 100% во всей видимой области спектра — от красной до зеленой и голубой. Такой специализированный "бортовой" оптический компьютер помогает выживать этому червю на глубине до 500 м. Можно с достоверностью утверждать, что человеческий интеллект пойдет значительно дальше в использовании уникальных свойств фотонных кристаллов.