Формула расстояния между скрещивающимися прямыми в пространстве. Нахождение расстояния между скрещивающимися прямыми

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Стереометрия Расстояние между скрещивающимися прямыми

Общим перпендикуляром двух скрещивающихся прямых называют отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. a b A B Расстоянием между скрещивающимися прямыми называют длину их общего перпендикуляра.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из этих прямых до плоскости, проходящей через вторую прямую параллельно первой прямой.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между двумя параллельными плоскостями, содержащими эти прямые.

№ 1 В единичном кубе найдите

№ 2 В единичном кубе найдите

№ 3 В единичном кубе найдите

№ 4 В единичном кубе найдите

Общий перпендикуляр двух скрещивающихся прямых и есть отрезок, соединяющий середины отрезков и Е – середина F – середина

№ 5 В единичном кубе найдите ~

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между их проекциями на плоскость, перпендикулярную одной из них.

№ 5 В единичном кубе найдите O – проекция прямой АС на плоскость

№ 6 Дана правильная пирамида PABC c боковым ребром PA = 3 и стороной основания 2 . Найдите

Прямоугольный - прямоугольный - прямоугольный

№ 7 В единичном кубе найдите расстояние между прямыми и


По теме: методические разработки, презентации и конспекты

Угол между скрещивающимися прямыми

Презентация для подготовки к сдаче ЕГЭ по математике по теме "Угол между скрещивающимися прямыми"...

Разработана совместно с учащимися 11 класса. Рассмотрены различные методы решения задач по данной теме....

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от "выигрышных" задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями "пространственного мышления" конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи - построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый "экран") до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче : "В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани". Ответ: .

Рисунок 1

h скр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, h скр и является расстоянием между ребром а и диагональю d .

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная h скр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная h скр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных - ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А 1 А перпендикулярна плоскости АВСD , то А 1 А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А 1 А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD - квадрат. Следовательно, DH - расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH - расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA 1 параллельна плоскости BB 1 D 1 D, B 1 D принадлежит этой плоскости, следовательно расстояние от AA 1 до плоскости BB 1 D 1 D равно расстоянию между прямыми AA 1 и B 1 D. Проведем AHBD. Также, AH B 1 B, следовательно AH(BB 1 D 1 D), следовательно AHB 1 D, т. е. AH - искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F 1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA 1 и ED 1 .

Рассмотрим плоскость E 1 EDD 1 . A 1 E 1 EE 1 , A 1 E 1 E 1 D 1 , следовательно

A 1 E 1 (E 1 EDD 1). Также A 1 E 1 AA 1 . Следовательно, A 1 E 1 является расстоянием от прямой AA 1 до плоскости E 1 EDD 1 . ED 1 (E 1 EDD 1)., следовательно AE 1 - расстояние от прямой AA 1 до прямой ED 1 . Находим A 1 E 1 из треугольника F 1 A 1 E 1 по теореме косинусов. Ответ:

б) AF и диагональю BE 1 .

Проведем из точки F прямую FH перпендикулярно BE. EE 1 FH, FHBE, следовательно FH(BEE 1 B 1), следовательно FH является расстоянием между прямой AF и (BEE 1 B 1), а значит и расстоянием между прямой AF и диагональю BE 1 . Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Задача 4.

Рисунок 11

а) Плоскости BAA 1 B 1 и DEE 1 D 1 параллельны, так как AB || ED и AA 1 || EE 1 . ED 1 DEE 1 D 1 , AA 1 (BAA 1 B 1), следовательно, расстояние между прямыми AA 1 и ED 1 равно расстоянию между плоскостями BAA 1 B 1 и DEE 1 D 1 . A 1 E 1 AA 1 , A 1 E 1 A 1 B 1 , следовательно, A 1 E 1 BAA 1 B 1 . Аналогично доказываем, что A 1 E 1 (DEE 1 D 1). Т.о., A 1 E 1 является расстоянием между плоскостями BAA 1 B 1 и DEE 1 D 1 , а значит, и между прямыми AA 1 и ED 1 . Находим A 1 E 1 из треугольника A 1 F 1 E 1 , который является равнобедренным с углом A 1 F 1 E 1 , равным . Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE 1 находится аналогично.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A 1 C обеим параллельным плоскостям (AB 1 D 1 || BC 1 D). B 1 CBC 1 и BC 1 A 1 B 1 , следовательно, прямая BC 1 перпендикулярна плоскости A 1 B 1 C, и следовательно, BC 1 A 1 C. Также, A 1 CBD. Следовательно, прямая A 1 C перпендикулярна плоскости BC 1 D. Вычислительная же часть задачи особых трудностей не вызывает, так как h скр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A 1 AB 1 D 1 и CC 1 BD.

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на "экран"

Задача 5. Все та же "классическая" задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится "экран" - диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A 1 B 1 CD. C 1 F (A 1 B 1 CD), т. к. C 1 FB 1 C и C 1 FA 1 B 1 . Тогда проекцией C 1 D на "экран" будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a .

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль "экрана", перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH - искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.

Навигация по странице.

Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

Определение.

– это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Определение.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

Рассмотрим скрещивающиеся прямые a и b . Отметим на прямой a некоторую точку М 1 , через прямую b проведем плоскость , параллельную прямой a , и из точки М 1 опустим перпендикуляр М 1 H 1 на плоскость . Длина перпендикуляра M 1 H 1 есть расстояние между скрещивающимися прямыми a и b .

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.

При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена Oxyz и в ней заданы скрещивающиеся прямые a и b , то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть - плоскость, проходящая через прямую b , параллельно прямой a . Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М 1 , лежащей на прямой a , до плоскости . Таким образом, если мы определим координаты некоторой точки М 1 , лежащей на прямой a , и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М 1 , лежащей на прямой a , и к нахождению нормального уравнения плоскости .

С определением координат точки М 1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве . А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М 2 , через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М 2 можно взять любую точку, лежащую на прямой b , так как плоскость проходит через прямую b . Таким образом, координаты точки М 2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a . Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямой a (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Пример.

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b . Прямую a определяют

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых ("канонический" или "параметрический"), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz L 1 и L 2:

. (1)
, (2)

где M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) − точки, лежащие на прямых L 1 и L 2 , а q 1 ={m 1 , p 1 , l 1 } и q 2 ={m 2 , p 2 , l 2 } − направляющие векторы прямых L 1 и L 2 , соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M 1 прямой L 1 проводим плоскость α , перпендикулярно прямой L 2 . Находим точку M 3 (x 3 , y 3 , y 3) пересечения плоскости α и прямой L 3 . По сути мы находим проекцию точки M 1 на прямую L 2 . Как найти проекцию точки на прямую посмотрите . Далее вычисляем расстояние между точками M 1 (x 1 , y 1 , z 1) и M 3 (x 3 , y 3 , z 3):

Пример 1. Найти расстояние между прямыми L 1 и L 2:

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M

Подставляя значения m 2 , p 2 , l 2 , x 1 , y 1 , z 1 в (5) получим:

Найдем точку пересечения прямой L 2 и плоскости α , для этого построим параметрическое уравнение прямой L 2 .

Чтобы найти точку пересечения прямой L 2 и плоскости α , подставим значения переменных x , y , z из (7) в (6):

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L 2 и плоскости α :

Остается найти расстояние между точками M 1 и M 3:

L 1 и L 2 равно d =7.2506.

Метод 2. Найдем расстояние между прямыми L 1 и L 2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L 1 и L 2 . Если направляющие векторы прямых L 1 и L 2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q 1 =λ q 2 , то прямые L 1 и L 2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q 1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d , разделив площадь на основание q 1 параллелограмма.

q 1:

.

Расстояние между прямыми L 1 и L 2 равно:

,
,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (8, 4, 1) и имеет направляющий вектор

q 2 ={m 2 , p 2 , l 2 }={2, −4, 8}

Векторы q 1 и q 2 коллинеарны. Следовательно прямые L 1 и L 2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x 2 −x 1 , y 2 −y 1 , z 2 −z 1 }={7, 2, 0}.

Вычислим векторное произведение векторов и q 1 . Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k , а остальные строки заполнены элементами векторов и q 1:

Таким образом, результатом векторного произведения векторов и q 1 будет вектор:

Ответ: Расстояние между прямыми L 1 и L 2 равно d =7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L 1 и L 2 (уравнения (1) и (2)).

Пусть прямые L 1 и L 2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L 1 и L 2 нужно построить параллельные плоскости α 1 и α 2 так, чтобы прямая L 1 лежал на плоскости α 1 а прямая L 2 − на плоскости α 2 . Тогда расстояние между прямыми L 1 и L 2 равно расстоянию между плоскостями L 1 и L 2 (Рис. 3).

где n 1 ={A 1 , B 1 , C 1 } − нормальный вектор плоскости α 1 . Для того, чтобы плоскость α 1 проходила через прямую L 1 , нормальный вектор n 1 должен быть ортогональным направляющему вектору q 1 прямой L 1 , т.е. скалярное произведение этих векторов должен быть равным нулю:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A 1 , B 1 , C 1 , D 1 , и подставляя в уравнение

Плоскости α 1 и α 2 параллельны, следовательно полученные нормальные векторыn 1 ={A 1 , B 1 , C 1 } и n 2 ={A 2 , B 2 , C 2 } этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n 2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

(33)

Решение. Прямая L 1 проходит через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и имеет направляющий вектор q 1 ={m 1 , p 1 , l 1 }={1, 3, −2}.

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (6, −1, 2) и имеет направляющий вектор q 2 ={m 2 , p 2 , l 2 }={2, −3, 7}.

Построим плоскость α 1 , проходящую через прямую L 1 , параллельно прямой L 2 .

Поскольку плоскость α 1 проходит через прямую L 1 , то она проходит также через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и нормальный вектор n 1 ={m 1 , p 1 , l 1 } плоскости α 1 перпендикулярна направляющему вектору q 1 прямой L 1 . Тогда уравнение плоскости должна удовлетворять условию:

Так как плоскость α 1 должна быть параллельной прямой L 2 , то должна выполнятся условие:

Представим эти уравнения в матричном виде:

(40)

Решим систему линейных уравнений (40) отностительно A 1 , B 1 , C 1 , D 1.

Наряду с точкой и плоскостью. Это бесконечная фигура, которой можно соединить любые две точки в пространстве. Прямая всегда принадлежит какой-либо плоскости. Исходя из расположения двух прямых, следует применять разные методы поиска расстояния между ними.

Существует три варианта расположения двух прямых в пространстве друг относительно друга: они параллельны, пересекаются или . Второй вариант возможен, только если они в одной плоскости, не исключает принадлежности двум параллельным плоскостям. Третья ситуация говорит о том, что прямые лежат в разных параллельных плоскостях.

Чтобы найти расстояние между двумя параллельными прямыми, нужно определить длину перпендикулярного отрезка, соединяющего их в любых двух точках. Поскольку прямые имеют две одинаковые координаты, что следует из определения их параллельности, то уравнения прямых в двухмерном координатном пространстве можно записать так:
L1: а х + b у + с = 0;
L2: а х + b у + d = 0.
Тогда можно найти длину отрезка по формуле:
s = |с - d|/√(a² + b²), причем нетрудно заметить, что при С = D, т.е. совпадении прямых, расстояние будет равно нулю.

Понятно, что расстояние между пересекающимися прямыми в двухмерной координат не имеет смысла. Зато когда они расположены в разных плоскостях, его можно найти как длину отрезка, лежащего в плоскости, перпендикулярной им обеим. Концами этого отрезка будут точки, являющиеся проекциями любых двух точек прямых на эту плоскость. Иными , его длина равна расстоянию между параллельными плоскостями, содержащими эти прямые. Таким образом, если плоскости заданы общими уравнениями:
α: А1 х + В1 у + С1 z + Е = 0,
β: А2 х + В2 у + С2 z + F = 0,
расстояние между прямыми можно по формуле:
s = |Е – F|/√(|А1 А2| + В1 В2 + С1 С2).

Обратите внимание

Прямые вообще и скрещивающиеся в частности интересны не только математикам. Их свойства полезны во многих других областях: в строительстве и архитектуре, в медицине и в самой природе.

Совет 2: Как найти расстояние между двумя параллельными прямыми

Определение расстояния между двумя объектами, находящимися в одной или нескольких плоскостях, является одной из самых распространенных задач в геометрии. Руководствуясь общепринятыми методами, вы можете найти расстояние между двумя параллельными прямыми.

Инструкция

Параллельными называются прямые, лежащие в одной плоскости, которые либо не пересекаются, либо совпадают. Для нахождения расстояния между параллельными прямыми следует выбрать произвольную точку на одной из них, после чего опустить перпендикуляр ко второй прямой. Теперь остается лишь измерить длину получившегося отрезка. Длина соединяющего две параллельные прямые перпендикуляра и будет являться расстоянием между ними.

Обратите внимание на порядок проведения перпендикуляра от одной параллельной прямой к другой, поскольку от этого зависит точность рассчитанного расстояния. Для этого воспользуйтесь чертежным инструментом «треугольником» с прямым углом. Выберите точку на одной из прямых, приложите к ней одну из сторон треугольника, примыкающих к прямому углу (катет), а вторую сторону совместите с другой прямой. Остро заточенным карандашом проведите вдоль первого катета линию так, чтобы она достигла противоположной прямой.