Черная дыра: что внутри? Интересные факты и исследования. Черная дыра в космосе

Чёрная дыра возникает в результате коллапса сверхмассивной звезды, в ядре которой заканчивается «топливо» для ядерной реакции. По мере сжатия температура ядра повышается, а фотоны с энергией более 511 кэВ, сталкиваясь, образуют электрон-позитронные пары, что приводит к катастрофическому снижению давления и дальнейшему коллапсу звезды под воздействием собственной гравитации.

Астрофизик Этан Сигел (Ethan Siegel) опубликовал статью «Крупнейшая чёрная дыра в известной Вселенной» , в которой собрал информацию о массе чёрных дыр в разных галактиках. Просто интересно: где же находится самая массивная из них?

Поскольку наиболее плотные скопления звёзд - в центре галактик, то сейчас практически у каждой галактики в центре находится массивная чёрная дыра, образованная после слияния множества других. Например, в центре Млечного пути есть чёрная дыра массой примерно 0,1% нашей галактики, то есть в 4 млн раз больше массы Солнца.

Определить наличие чёрной дыры очень легко, изучив траекторию движения звёзд, на которые воздействует гравитация невидимого тела.

Но Млечный путь - относительно маленькая галактика, которая никак не может иметь у себя самую большую чёрную дыру. Например, недалеко от нас в скоплении Девы находится гигантская галактика Messier 87 - она примерно в 200 раз больше нашей.

Так вот, из центра этой галактики вырывается поток материи длиной около 5000 световых лет (на фото). Это сумасшедшая аномалия, пишет Этан Сигел, но выглядит очень красиво.

Учёные считают, что объяснением такого «извержения» из центра галактики может быть только чёрная дыра. Расчёт показывает, что масса этой чёрной дыры где-то в 1500 раз больше, чем масса чёрной дыры в Млечном пути, то есть примерно 6,6 млрд масс Солнца.

Но где же во Вселенной самая большая чёрная дыра? Если исходить из расчёта, что в центре почти каждой галактики имеется такой объект с массой 0,1% от массы галактики, то нужно найти самую массивную галактику. Учёные могут дать ответ и на этот вопрос.

Самая массивная из известных нам - галактика IC 1101 в центре скопления Abell 2029, который находится от Млечного пути в 20 раз дальше, чем скопление Девы.

В IC 1101 расстояние от центра до самого дальнего края - около 2 млн световых лет. Её размер вдвое больше, чем расстояние от Млечного пути до ближайшей к нам галактики Андромеды. Масса почти равняется массе всего скопления Девы!

Если в центре IC 1101 есть чёрная дыра (а она должна там быть), то она может быть самой массивной в известной нам Вселенной.

Этан Сигел говорит, что может и ошибиться. Причина - в уникальной галактике NGC 1277. Это не слишком большая галактика, чуть меньше нашей. Но анализ её вращения показал невероятный результат: чёрная дыра в центре составляет 17 млрд солнечных масс, а это аж 17% общей массы галактики. Это рекорд по соотношению массы чёрной дыры к массе галактики.

Есть и ещё один кандидат на роль самой большой чёрной дыры в известной Вселенной. Он изображён на следующей фотографии.

Странный объект OJ 287 называется блазар . Блазары - особый класс внегалактических объектов, разновидность квазаров. Они отличаются очень мощным излучением, которое в OJ 287 меняется с циклом 11-12 лет (с двойным пиком).

По мнению астрофизиков, OJ 287 включает в себя сверхмассивную центральную чёрную дыру, по орбите которой вращается ещё одна чёрная дыра меньшего размера. Центральная чёрная дыра в 18 млрд масс Солнца - самая большая из известных на сегодняшний день.

Эта парочка чёрных дыр станет одним из самых лучших экспериментов для проверки общей теории относительности, а именно - деформации пространства-времени, описанной в ОТО.

Из-за релятивистских эффектов перигелий чёрной дыры, то есть ближайшая к центровой чёрной дыре точка орбиты, должен смещаться на 39° за один оборот! Для сравнения, перигелий Меркурия сместился всего на 43 арксекунды за столетие.

Черные дыры всегда были одним из интереснейших объектов наблюдений ученых. Являясь самыми большими объектами, находящимися во Вселенной, они в то же время недосягаемы и недоступными человечеству в полной мере. Пройдет еще немало времени, пока мы узнаем о тех процессах, которые происходят близ «точки невозврата». Что такое черная дыра с точки зрения науки?

Давайте поговорим о тех фактах, которые все же стали известны исследователям в результате продолжительных работ..

1. Черные дыры на самом деле не черные

Так как черные дыры излучают электромагнитные волны, то они могут быть выглядеть не черными, а даже наоборот вполне разноцветными. И выглядит это весьма впечатляюще.

2. Черные дыры не втягивают материю

Среди простых смертных сложился стереотип, что черная дыра — огромный пылесос, который тянет в себя окружающее пространство. Не будем чайниками и попробуем разобраться, что же это на самом деле.

В целом, (не вдаваясь в сложности квантовой физики и астрономических исследований) черную дыру можно представить как космический объект, у которого сильно завышено гравитационное поле. К примеру, если бы на месте Солнца была черная дыра такого же размера, то … ничего бы не произошло, и наша планета продолжила бы вращаться по той же орбите. «Поглощают» черные дыры только части материи звезд в виде звездного ветра, присущего любой звезде.


3. Черные дыры могут порождать новые вселенные

Конечно же, этот факт звучит как нечто из ряда фантастики, тем более, что нет доказательств существования других вселенных. Тем не менее, учеными довольно плотно изучаются подобные теории.

Если говорить простым языком, то если бы хоть одна физическая константа в нашем мире изменилась на небольшую величину, мы бы потеряли возможность существования. Сингулярность черных дыр отменяет привычные законы физики и может (по крайней мере, в теории) породить новую вселенную, отличающуюся по тем или иным параметрам от нашей.

4. Черные дыры испаряются со временем

Как было сказано ранее черные дыры поглощают звездный ветер. Помимо этого они медленно, но верно испаряются, то есть отдают свою массу в окружающее пространство, а затем и исчезают совсем. Это явление было открыто в 1974 году и названо излучением Хокинга, в честь Стивена Хокинга, который и сделал это открытие миру.

5. Ответ на вопрос «что такое черная дыра» был предсказан Карлом Шварцшильдом

Как известно, автор теории относительности, связанной с – Альберт Эйнштейн. Но ученый не уделял должного внимания изучению небесных тел, хотя его теория могла и более того предсказала существование черных дыр. Таким образом, Карл Шварцшильд стал первым ученым, применившим общую теорию относительности для обоснования существования «точки невозврата».

Интересен тот факт, что это случилось 1915 году, сразу же после того, как Эйнштейн опубликовал общую теорию относительности. Именно тогда возник термин «радиус Шварцшильда» — грубо говоря, это величина силы, с которой необходимо сжать объект, чтобы он превратился в черную дыру. Однако, это задачка не из легких. Давайте разберемся почему.

Дело в том, что в теории черной дырой может стать любое тело, но при воздействии на него определенной степени сжатия. К примеру, плод арахиса мог бы стать черной дырой, если бы обладал массой планеты Земля…

Интересный факт: Черные дыры - единственные в своем роде космические тела, имеющие способность притягивать силой гравитации свет.

6. Черные дыры искривляют пространство рядом с собой

Представим все пространство вселенной в виде виниловой пластинки. Если на нее положить раскаленный предмет, она изменит свою форму. То же самое происходит и с черными дырами. Их предельная масса притягивает к себе все, в том числе и лучи света, за счет чего пространство вокруг них искривляется.

7. Черные дыры ограничивают количество звезд во Вселенной

….Ведь, если звезды зажигают —

значит — это кому-нибудь нужно?

В.В. Маяковский

Обычно полностью сформировавшиеся звезды представляют собой облако остывших газов. Излучение черных дыр не дает газовым облакам остывать, а следовательно, предотвращает появление звезд.

8. Черные дыры являются самыми совершенными энергетическими установками

Черные дыры производят больше энергии, чем Солнце и другие звезды. Причиной тому материя, находящаяся вокруг нее. Когда материя преодолевает горизонт событий на большой скорости, она разогревается на орбите черной дыры до предельно высокой температуры. Это явление называют излучением абсолютно черного тела.

Интересный факт: В процессе ядерного синтеза энергией становятся 0,7% материи. Вблизи черной дыры в энергию превращается 10% материи!


9. Что будет если попасть в черную дыру?

Черные дыры «растягивают» тела, находящиеся рядом с ними. Вследствие этого процесса предметы начинают напоминать спагетти (существует даже специальный термин — «спагеттификация» =).

Хоть этот факт и может показаться шуточным, ему есть свое объяснение. Это происходит благодаря физическим принцип силы притяжения. Возьмем как пример тело человека. Находясь на земле, наши ноги находятся к центру Земли ближе, чем голова, поэтому они притягиваются сильнее. На поверхности черной дыры ноги притягиваются к центру черной дыры намного быстрее, и поэтому верхняя часть туловища попросту не успевает за ними. Итог: спагеттификация!

10. Теоретически, любой объект может стать черной дырой

И даже Солнце. Единственное, что не позволяет солнцу превратиться в абсолютно черное тело — сила гравитации. В центре черной дыры она в разы сильнее, чем в центре Солнца. В данном случае, если бы наше светило было сжато до четырех километров в диаметре, то вполне могла бы стать черной дырой (за счет большой массы).

Но это в теории. На практике известно, что черные дыры появляются только в результате коллапса сверхбольших звезд, превышающих Солнце по массе в 25-30 раз.

11.Черные дыры замедляют время вблизи себя

Основной тезис этого факта — по мере приближения к горизонту событий время замедляется. Это явление можно проиллюстрировать при помощи «парадокса близнецов», часто использующегося при объяснении положений теории относительности.

Основная идея состоит в том, что один из братьев — близнецов улетает в космос, а второй остается на Земле. Вернувшись домой, близнец обнаруживает, что брат постарел больше, чем он, так как при движении на скорости, приближенной к скорости света время начинает идти медленнее..


Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины - переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр - наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары - космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики - их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым - ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами - под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры - возле ее внешней границы, горизонта событий. Такое рождение является парным - появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории - как квантовая физика, так и классическая - имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется - действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна - ничто не может покинуть горизонт событий.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.

Чёрная дыра в физике определяется как область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света, в том числе и кванты самого света. Граница этой области называется горизонтом событий, а её характерный размер – гравитационным радиусом, который назван радиусом Шварцвальда. Чёрные дыры – это самые загадочные объекты во Вселенной. Своим неудачным названием они обязаны американскому астрофизику Джону Уиллеру. Это он в популярной лекции «Наша Вселенная: известное и неизвестное» в 1967 г. назвал эти сверхплотные тела дырами. Ранее подобные объекты называли «сколлапсировавшие звёзды» или «коллапсары». Но термин «чёрная дыра» прижился, и менять его уже стало просто невозможно. Во Вселенной существует два типа черных дыр: 1 – сверхмассивные черные дыры, масса которых в миллионы раз больше массы Солнца (считается, что такие объекты находятся в центрах галактик); 2 – менее массивные черные дыры, которые возникают в результате сжатия гигантских умирающих звезд, масса их больше трех масс Солнца; при сжатии звезды вещество все сильнее уплотняется и в результате гравитация объекта усиливается до такой степени, что свет не может преодолеть ее. Чёрную дыру не может покинуть ни излучение, ни вещество. Чёрные дыры – это сверхмощные гравитаторы.

Радиус, до которого должна сжаться звезда, чтобы превратиться в чёрную дыру, называется гравитационным радиусом. Для чёрных дыр, образовавшихся из звезд, он составляет всего лишь несколько десятков километров. В некоторых парах двойных звезд одна из них невидима в самый мощный телескоп, но масса невидимого компонента в такой гравитационной системе оказывается чрезвычайно большой. Скорее всего, такие объекты являются или нейтронными звездами, или чёрными дырами. Иногда невидимые компоненты в таких парах срывают вещество с нормальной звезды. В этом случае газ отделяется от внешних слоев видимой звезды и падает неведомо куда – на невидимую чёрную дыру. Но прежде чем упасть на дыру, газ излучает электромагнитные волны самой разной длины, в том числе и очень короткие рентгеновские волны. Более того, вблизи нейтронной звезды или чёрной дыры газ сильно разогревается и становится источником мощного высокоэнергичного электромагнитного излучения в рентгеновском и гамма-диапазонах. Такое излучение не проходит сквозь земную атмосферу, но его можно наблюдать с помощью космических телескопов. Одним из вероятных кандидатов в чёрные дыры считается мощный источник рентгеновских лучей в созвездии Лебедя.