Написать общее уравнение плоскости проходящей через точки. Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы были компланарны.

Определение 2.1.

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Если две прямые a и b параллельны, то, как и в планиметрии, пишут a || b . В пространстве прямые могут быть размещены так, что они не пересекаются и не параллельны. Этот случай является особым для стереометрии.

Определение 2.2.

Прямые, которые не имеют общих точек и не параллельны, называются скрещивающимися.

Теорема 2.1.

Через точку вне данной прямой можно провести прямую, параллельную данной, и притом только одну.

Признак параллельности прямых
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Через точку вне данной прямой можно пронести прямую, параллельную этой пряиой, и притом только одну. Это утверждение сводится к аксиоме о параллельных в плоскости. Теорема. Две прямые, параллельные третьей прямой, параллельны. Пусть прямые b и с параллельны прямой а. Падо доказать, что b || с. Случай, когда прямые а, b и слежат и одной плоскости, рассмотрен в планиметрии, его опускаем. Предположим, что а, b и с не лежит в одной плоскости. Но так как две параллельные прямые расположены в одной плоскости, то можно считать, что а и b расположены и плоскости , a b и с -- в плоскости (рис. 61). На прямой с отметим точку (любую) М и через прямую b и точку M проведем плоскость . Она, , пересекает по прямой l. Прямая l не пересекает плоскость , так как если l пересекала бы , то точка их пересечения должна лежать на а (а и l - в одной плоскости) и на b (b и l - в одной плоскости). Таким образом, одна точка пересечения l и должна лежать и на прямой а, и на прямой b, что невозможно: а || b. Следовательно, а || , l || а, l || b. Поскольку a и l лежат в одной плоскости, то l совпадает с прямой с (по аксиоме параллельности), а значит, с || b. Теорема доказана.

25.Признак параллельности прямой и плоскости

Теорема

Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.



Доказательство

Пусть α - плоскость, a – не лежащая в ней прямая и a1 – прямая в плоскости α, параллельная прямой a. Проведем плоскость α1 через прямые a и a1. Плоскости α и α1 пересекаются по прямой a1. Если бы прямая a пересекала плоскость α, то точка пересечения принадлежала бы прямой a1. Но это невозможно, так как прямые a и a1 параллельны. Следовательно, прямая a не пересекает плоскостью α, а значит, параллельна плоскости α. Теорема доказана.

27.Существование плоскости, параллельной данной плоскости

Теорема

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

Доказательство

Проведем в данной плоскости α какие-нибудь две пересекающиеся прямые a и b. Через данную точку A проведем параллельные им прямые a1 и b1. Плоскость β, проходящая через прямые a1 и b1, по теореме о признаке параллельности плоскостей параллельна плоскости α.

Предположим, что через точку A проходит другая плоскость β1, тоже параллельная плоскости α. Отметим на плоскости β1 какую-нибудь точку С, не лежащую в плоскости β. Проведем плоскость γ через точки A, С и какую-нибудь точку B плоскости α. Эта плоскость пересечет плоскости α, β и β1 по прямым b, a и с. Прямые a и с не пересекают прямую b, так как не пересекают плоскость α. Следовательно, они параллельны прямой b. Но в плоскости γ через точку A может проходить только одна прямая, параллельная прямой b. что противоречит предположению. Теорема доказана.



28.Свойства параллельных плоскосте й

29.

Перпендикулярные прямые в пространстве. Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 градусов. c. m. k. k. m. c. k. Пересекающиеся. Скрещивающиеся.

Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Доказательство:Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точкуА пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости . Проведем произвольную прямую х через точкуА в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х. Отложим на прямой а от точки А в разные стороны равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА 1 =АА 2).по той же причине треугольник А 1 ВА 2 тоже равнобедренный. Следовательно, треугольники А 1 ВС и А 2 ВС равны по трем сторонам. Из равенства треугольников А 1 ВС и А 2 ВС следует равенство углов А 1 ВХ и А 2 ВХ и, следовательно равенство треугольников А 1 ВХ и А 2 ВХ по двум сторонам и углу между ними. Из равенства сторон А 1 Х и А 2 Х этих треугольников заключаем, что треугольник А 1 ХА 2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямаяа перпендикулярна плоскости . Теорема доказана.
Теорема 2 1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство: Пусть а 1 и а 2 - 2 параллельные прямые и плоскость, перпендикулярная прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 . Проведем через точку А 2 пересечения прямой а 2 с плоскостью произвольную прямую х 2 в плоскости . Проведем в плоскости через точку А 1 пересечения прямой а 1 с прямую х 1 , параллельную прямой х 2 . Так как прямая а 1 перпендикулярна плоскости , то прямые а 1 и x 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и х 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой х 2 в плоскости . А это (по определению)значит, что прямая а 2 перпендикулярна плоскости . Теорема доказана. Смотри также опорную задачу №2.
Теорема 3 2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Две прямые, перпендикулярные одной и той же плоскости, параллельны.
Доказательство: Пусть а и b - 2 прямые, перпендикулярные плоскости . Допутим, что прямые а и b не параллельны. Выберем на прямой b точкуС, не лежащую в плоскости . Проведем через точку С прямую b 1 , параллельную прямой а. Прямая b 1 перпендикулярна плоскости по теореме 2. Пусть В и В 1 - точки пересечения прямых b и b 1 с плоскостью . Тогда прямая ВВ 1 перпендикулярна пересекающимся прямым b и b 1 . А это невозможно. Мы пришли к противоречию. Теорема доказана.

33.Перпендикуляром , опущенным из данной точки данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра .
Наклонной , проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной . Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной .

AB – перпендикуляр к плоскости α.
AC – наклонная, CB – проекция.

Формулировка теоремы

Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна к наклонной.

Доказательство

Пусть AB - перпендикуляр к плоскости α, AC - наклонная и c - прямая в плоскости α, проходящая через точку C и перпендикулярная проекции BC . Проведем прямую CK параллельно прямой AB . Прямая CK перпендикулярна плоскости α (так как она параллельна AB ), а значит, и любой прямой этой плоскости, следовательно, CK перпендикулярна прямой c . Проведем через параллельные прямые AB и CK плоскость β (параллельные прямые определяют плоскость, причем только одну). Прямая c перпендикулярна двум пересекающимся прямым, лежащим в плоскости β, это BC по условию и CK по построению, значит, она перпендикулярна и любой прямой, принадлежащей этой плоскости, значит, перпендикулярна и прямой AC .

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы были компланарны.

(
) = 0

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М 1 (x 1 ,y 1 ,z 1),M 2 (x 2 ,y 2 ,z 2) и вектор
.

Составим уравнение плоскости, проходящей через данные точки М 1 и М 2 и произвольную точку М(х, у, z) параллельно вектору .

Векторы
и вектор
должны быть компланарны, т.е.

(
) = 0

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам,

коллинеарным плоскости.

Пусть заданы два вектора
и
, коллинеарные плоскости. Тогда для произвольной точки М(х, у,z), принадлежащей плоскости, векторы
должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали .

Теорема. Если в пространстве задана точка М 0 0 , у 0 , z 0 ), то уравнение плоскости, проходящей через точку М 0 перпендикулярно вектору нормали (A , B , C ) имеет вид:

A (x x 0 ) + B (y y 0 ) + C (z z 0 ) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору
. Тогда скалярное произведение

= 0

Таким образом, получаем уравнение плоскости

Теорема доказана.

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)

,

заменив
, получим уравнение плоскости в отрезках:

Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

Уравнение плоскости в векторной форме.

где

- радиус- вектор текущей точки М(х, у, z),

Единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

,  и  - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcos + ycos + zcos - p = 0.

Расстояние от точки до плоскости.

Расстояние от произвольной точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+Сz+D=0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x 0 ) + B(y – y 0 ) + C(z – z 0 ) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и

Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0
параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор
(1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали(1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 - 24 +D= 0;D= -21.

Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали
= (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А 1 (1; 0; 3), A 2 (2; -1; 3), A 3 (2; 1; 1),

    Найти длину ребра А 1 А 2 .

    Найти угол между ребрами А 1 А 2 и А 1 А 4 .

    Найти угол между ребром А 1 А 4 и гранью А 1 А 2 А 3 .

Сначала найдем вектор нормали к грани А 1 А 2 А 3 как векторное произведение векторов
и
.

= (2-1; 1-0; 1-3) = (1; 1; -2);

Найдем угол между вектором нормали и вектором
.

-4 – 4 = -8.

Искомый угол  между вектором и плоскостью будет равен  = 90 0 - .

    Найти площадь грани А 1 А 2 А 3 .

    Найти объем пирамиды.

    Найти уравнение плоскости А 1 А 2 А 3 .

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;

При использовании компьютерной версии “Курса высшей математики ” можно запустить программу, которая решит рассмотренный выше пример для любых координат вершин пирамиды.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите координаты вершин пирамиды и, нажимитеEnter. Таким образом, поочередно могут быть получены все пункты решения.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple ( Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

13.Угол между плоскостями, расстояние от точки до плоскости.

Пусть плоскости α и β пересекаются по прямой с.
Угол между плоскостями - это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях .

Другими словами, в плоскости α мы провели прямую а, перпендикулярную с. В плоскости β - прямую b, также перпендикулярную с. Угол между плоскостями α и β равен углу между прямыми а и b.

Заметим, что при пересечении двух плоскостей вообще-то образуются четыре угла. Видите их на рисунке? В качестве угла между плоскостями мы берем острый угол.

Если угол между плоскостями равен 90 градусов, то плоскости перпендикулярны ,

Это определение перпендикулярности плоскостей. Решая задачи по стереометрии, мы используем также признак перпендикулярности плоскостей :

Если плоскость α проходит через перпендикуляр к плоскости β, то плоскости α и β перпендикулярны .

расстояние от точки до плоскости

Рассмотрим точку T, заданную своими координатами:

T = (x 0 , y 0 , z 0)

Также рассмотрим плоскость α, заданную уравнением:

Ax + By + Cz + D = 0

Тогда расстояние L от точки T до плоскости α можно считать по формуле:

Другими словами, мы подставляем координаты точки в уравнение плоскости, а затем делим это уравнение на длину вектора-нормали n к плоскости:

Полученное число и есть расстояние. Давайте посмотрим, как эта теорема работает на практике.


Мы уже выводили параметические уравнения прямой на плоскости, давайте получим параметрические уравнения прямой, которая задана в прямоугольной системе координат в трехмерном пространстве.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz . Зададим в ней прямую a (смотрите раздел способы задания прямой в пространстве), указав направляющий вектор прямой и координаты некоторой точки прямой . От этих данных будем отталкиваться при составлении параметрических уравнений прямой в пространстве.

Пусть - произвольная точка трехмерного пространства. Если вычесть из координат точки М соответствующие координаты точки М 1 , то мы получим координаты вектора (смотрите статью нахождение координат вектора по координатам точек его конца и начала), то есть, .

Очевидно, что множество точек определяет прямую а тогда и только тогда, когда векторы и коллинеарны.

Запишем необходимое и достаточное условие коллинеарности векторов и : , где - некоторое действительное число. Полученное уравнение называется векторно-параметрическим уравнением прямой в прямоугольной системе координат Oxyz в трехмерном пространстве. Векторно-параметрическое уравнение прямой в координатной форме имеет вид и представляет собой параметрические уравнения прямой a . Название "параметрические" не случайно, так как координаты всех точек прямой задаются с помощью параметра .

Приведем пример параметрических уравнений прямой в прямоугольной системе координат Oxyz в пространстве: . Здесь


15.Угол между прямой и плоскостью. Точка пересечения прямой с плоскостью.

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Векторa называется направляющим вектором прямой .

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Пример 1.15 . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3×3+D = 0 Þ D = -11. Итак, x-y+3z-11=0.

Пример 1.16 . Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60 о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

.

Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни
m 1 = 1/3, m 2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y - 2z + 5 = 0.

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1 , y 1 , z 1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) иn 2 (2,3,-2). Тогда

Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 =
= (z - 1)/13.

Пример 1.18 . В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v)×1 + (-u + v)×0 + (5u + 2v)×1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u¹0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0

Данная статья дает представление о том, как составить уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Разберем приведенный алгоритм на примере решения типовых задач.

Yandex.RTB R-A-339285-1

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой

Пусть задано трехмерное пространство и прямоугольная система координат O x y z в нем. Заданы также точка М 1 (x 1 , y 1 , z 1) , прямая a и плоскость α , проходящая через точку М 1 перпендикулярно прямой a . Необходимо записать уравнение плоскости α .

Прежде чем приступить к решению этой задачи, вспомним теорему геометрии из программы 10 - 11 классов, которая гласит:

Определение 1

Через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к заданной прямой.

Теперь рассмотрим, как же найти уравнение этой единственной плоскости, проходящей через исходную точку и перпендикулярной данной прямой.

Возможно записать общее уравнение плоскости, если известны координаты точки, принадлежащей этой плоскости, а также координаты нормального вектора плоскости.

Условием задачи нам заданы координаты x 1 , y 1 , z 1 точки М 1 , через которую проходит плоскость α . Если мы определим координаты нормального вектора плоскости α , то получим возможность записать искомое уравнение.

Нормальным вектором плоскости α , так как он ненулевой и лежит на прямой a , перпендикулярной плоскости α , будет являться любой направляющий вектор прямой a . Так, задача нахождения координат нормального вектора плоскости α преобразовывается в задачу определения координат направляющего вектора прямой a .

Определение координат направляющего вектора прямой a может осуществляться разными методами: зависит от варианта задания прямой a в исходных условиях. К примеру, если прямая a в условии задачи задана каноническими уравнениями вида

x - x 1 a x = y - y 1 a y = z - z 1 a z

или параметрическими уравнениями вида:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

то направляющий вектор прямой будет иметь координаты а x , а y и а z . В случае, когда прямая a представлена двумя точками М 2 (x 2 , y 2 , z 2) и М 3 (x 3 , y 3 , z 3) , то координаты направляющего вектора буду определяться как (x3 – x2, y3 – y2, z3 – z2).

Определение 2

Алгоритм для нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно заданной прямой:

Определяем координаты направляющего вектора прямой a: a → = (а x , а y , а z) ;

Определяем координаты нормального вектора плоскости α как координаты направляющего вектора прямой a:

n → = (A , B , C) , где A = a x , B = a y , C = a z ;

Записываем уравнение плоскости, проходящей через точку М 1 (x 1 , y 1 , z 1) и имеющей нормальный вектор n → = (A , B , C) в виде A (x – x 1) + B (y – y 1) + C (z – z 1) = 0 . Это и будет являться требуемым уравнением плоскости, которая проходит через заданную точку пространства и перпендикулярна к данной прямой.

Полученное общее уравнение плоскости: A (x – x 1) + B (y – y 1) + C (z – z 1) = 0 дает возможность получить уравнение плоскости в отрезках или нормальное уравнение плоскости.

Решим несколько примеров, используя полученный выше алгоритм.

Пример 1

Задана точка М 1 (3 , - 4 , 5) , через которую проходит плоскость, и эта плоскость перпендикулярна координатной прямой О z .

Решение

направляющим вектором координатной прямой O z будет координатный вектор k ⇀ = (0 , 0 , 1) . Следовательно, нормальный вектор плоскости имеет координаты (0 , 0 , 1) . Запишем уравнение плоскости, проходящей через заданную точку М 1 (3 , - 4 , 5) , нормальный вектор которой имеет координаты (0 , 0 , 1) :

A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 ⇔ ⇔ 0 · (x - 3) + 0 · (y - (- 4)) + 1 · (z - 5) = 0 ⇔ z - 5 = 0

Ответ: z – 5 = 0 .

Рассмотрим еще один способ решить данную задачу:

Пример 2

Плоскость, которая перпендикулярна прямой O z будет задана неполным общим уравнением плоскости вида С z + D = 0 , C ≠ 0 . Определим значения C и D: такие, при которых плоскость проходит через заданную точку. Подставим координаты этой точки в уравнение С z + D = 0 , получим: С · 5 + D = 0 . Т.е. числа, C и D связаны соотношением - D C = 5 . Приняв С = 1 , получим D = - 5 .

Подставим эти значения в уравнение С z + D = 0 и получим требуемое уравнение плоскости, перпендикулярной к прямой O z и проходящей через точку М 1 (3 , - 4 , 5) .

Оно будет иметь вид: z – 5 = 0 .

Ответ: z – 5 = 0 .

Пример 3

Составьте уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой x - 3 = y + 1 - 7 = z + 5 2

Решение

Опираясь на условия задачи, можно утверждать, что за нормальный вектор n → заданной плоскости можно принять направляющий вектор заданной прямой. Таким, образом: n → = (- 3 , - 7 , 2) . Запишем уравнение плоскости, проходящей через точку О (0 , 0 , 0) и имеющей нормальный вектор n → = (- 3 , - 7 , 2) :

3 · (x - 0) - 7 · (y - 0) + 2 · (z - 0) = 0 ⇔ - 3 x - 7 y + 2 z = 0

Мы получили требуемое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.

Ответ: - 3 x - 7 y + 2 z = 0

Пример 4

Задана прямоугольная система координат O x y z в трехмерном пространстве, в ней – две точки А (2 , - 1 , - 2) и B (3 , - 2 , 4) . Плоскость α проходит через точку A перпендикулярно прямой А В. Необходимо составить уравнение плоскости α в отрезках.

Решение

Плоскость α перпендикулярна к прямой А В, тогда вектор А В → будет нормальным вектором плоскости α . Координаты этого вектора определяются как разности соответствующих координат точек В (3 , - 2 , 4) и А (2 , - 1 , - 2) :

A B → = (3 - 2 , - 2 - (- 1) , 4 - (- 2)) ⇔ A B → = (1 , - 1 , 6)

Общее уравнение плоскости будет записано в следующем виде:

1 · x - 2 - 1 · y - (- 1 + 6 · (z - (- 2)) = 0 ⇔ x - y + 6 z + 9 = 0

Теперь составим искомое уравнение плоскости в отрезках:

x - y + 6 z + 9 = 0 ⇔ x - y + 6 z = - 9 ⇔ x - 9 + y 9 + z - 3 2 = 1

Ответ: x - 9 + y 9 + z - 3 2 = 1

Также нужно отметить, что встречаются задачи, требование которых – написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным плоскостям. В общем, решение этой задачи в том, чтобы составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, т.к. две пересекающиеся плоскости задают прямую линию.

Пример 5

Задана прямоугольная система координат O x y z , в ней – точка М 1 (2 , 0 , - 5) . Заданы также уравнения двух плоскостей 3 x + 2 y + 1 = 0 и x + 2 z – 1 = 0 , которые пересекаются по прямой a . Необходимо составить уравнение плоскости, проходящей через точку М 1 перпендикулярно к прямой a .

Решение

Определим координаты направляющего вектора прямой a . Он перпендикулярен как нормальному вектору n 1 → (3 , 2 , 0) плоскости n → (1 , 0 , 2) , так и нормальному вектору 3 x + 2 y + 1 = 0 плоскости x + 2 z - 1 = 0 .

Тогда направляющим вектором α → прямой a возьмем векторное произведение векторов n 1 → и n 2 → :

a → = n 1 → × n 2 → = i → j → k → 3 2 0 1 0 2 = 4 · i → - 6 · j → - 2 · k → ⇒ a → = (4 , - 6 , - 2)

Таким образом, вектор n → = (4 , - 6 , - 2) будет нормальным вектором плоскости, перпендикулярной к прямой a . Запишем искомое уравнение плоскости:

4 · (x - 2) - 6 · (y - 0) - 2 · (z - (- 5)) = 0 ⇔ 4 x - 6 y - 2 z - 18 = 0 ⇔ ⇔ 2 x - 3 y - z - 9 = 0

Ответ: 2 x - 3 y - z - 9 = 0

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Yandex.RTB R-A-339285-1

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Определение 1

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 (x 1 , y 1 , z 1) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Определение N

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) а M 1 M 3 → = x 3 - x 1 , y 3 - y 1 , z 3 - z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M (x , y , z) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) только в том случае, когда векторы M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) будут компланарными.

На схеме это будет выглядеть так:

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) .

Запишем полученное уравнение в координатной форме:

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Пример 1

Есть три точки, не лежащие на одной прямой, с координатами M 1 (- 3 , 2 , - 1) , M 2 (- 1 , 2 , 4) , M 3 (3 , 3 , - 1) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = - 1 - - 3 , 2 - 2 , 4 - - 1 ⇔ M 1 M 2 → = (2 , 0 , 5) M 1 M 3 → = 3 - - 3 , 3 - 2 , - 1 - - 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = - 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = (- 5 , 30 , 2) . Далее нам нужно взять одну из точек, например, M 1 (- 3 , 2 , - 1) , и записать уравнение для плоскости с вектором n → = (- 5 , 30 , 2) . Мы получим, что: - 5 · (x - (- 3)) + 30 · (y - 2) + 2 · (z - (- 1)) = 0 ⇔ - 5 x + 30 y + 2 z - 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) в следующем виде:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = - 3 , y 1 = 2 , z 1 = - 1 , x 2 = - 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = - 1 , в итоге мы получим:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = x - (- 3) y - 2 z - (- 1) - 1 - (- 3) 2 - 2 4 - (- 1) 3 - (- 3) 3 - 2 - 1 - (- 1) = = x + 3 y - 2 z + 1 2 0 5 6 1 0 = - 5 x + 30 y + 2 z - 73

Мы получили нужное нам уравнение.

Ответ: - 5 x + 30 y + 2 z - 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

Пример 2

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = (- 4 , 6 , 2) , M 1 M 3 → = - 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → - 4 6 2 - 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0 ⇔ x - 5 y - (- 8) z - (- 2) 1 - 5 - 2 - (- 8) 0 - (- 2) - 1 - 5 1 - (- 8) 1 - (- 2) = 0 ⇔ ⇔ x - 5 y + 8 z + 2 - 4 6 2 - 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 (x 4 , y 4 , z 4) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter