Равные треугольники по гипотенузе и острому углу. Признаки равенства прямоугольных треугольников

Вспомним из материала предыдущего урока, прямоугольный треугольником называется треугольник, если у него хотя бы один из углов прямой (т. е. равен 90 о).

Рассмотрим первый признак равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.

Проиллюстрируем данный случай:

Рис. 1. Равные прямоугольные треугольники

Доказательство :

Вспомним о первом равенстве произвольных треугольников.

Рис. 2

Если две стороны и угол между ними одного треугольника и соответствующие им две стороны и угол между ними второго треугольника равны, то данные треугольники равны. Об этом гласит первый признак равенства треугольников, то есть:

Аналогичное доказательство следует и для прямоугольных треугольников:

.

Треугольники равны по первому признаку.

Рассмотрим второй признак равенства прямоугольных треугольников. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 3

Доказательство :

Рис. 4

Воспользуемся вторым признаком равенства треугольников:

Аналогичное доказательство и для прямоугольных треугольников:

Треугольники равны по второму признаку.

Рассмотрим третий признак равенства прямоугольных треугольников: если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны.

Доказательство :

Рис. 5

Вспомним второй признак равенства треугольников:

Рис. 6

Данные треугольники равны, если:

Поскольку известно, что одна пара острых углов у прямоугольных треугольников равна (∠А = ∠А 1), то равенство другой пары углов (∠B = ∠B 1) доказывается следующим образом:

Поскольку АВ = А 1 В 1 (по условию), ∠В = ∠В 1 , ∠А = ∠А 1 . Поэтому треугольники АВС и А 1 В 1 С 1 равны по второму признаку.

Рассмотрим следующий признак равенства треугольников:

Если катет и гипотенуза одного треугольника соответственно равны катету и гипотенузе другого треугольника, такие прямоугольные треугольники равны.

Рис. 7

Доказательство :

Совместим наложением треугольники АВС и А 1 В 1 С 1 . Предположим, что вершины А и А 1 , а также С и С 1 совместились наложением, а вершина В и точка В 1 не совпадают. Именно этот случай указан на следующем рисунке:

Рис. 8

В данном случае мы можем заметить равнобедренный треугольник АВВ 1 (по определению - по условию АВ = АВ 1). Поэтому по свойству, ∠АВ 1 В = ∠АВВ 1 . Рассмотрим определение внешнего угла. Внешним углом треугольника называется угол, смежный любому углу треугольника. Его градусная мера равна сумме двух углов треугольника, несмежных с ним. На рисунке указано данное соотношение:

Рис. 9

Угол 5 является внешним углом треугольника и равен ∠5 = ∠1 + ∠2. Отсюда следует, что внешний угол больше каждого из углов, несмежных с ним.

Таким образом, ∠АВВ 1 является внешним углом для треугольника АВС и равен сумме ∠АВВ 1 = ∠САВ + ∠АСВ = ∠АВС = ∠САВ + 90 о. Таким образом, ∠АВ 1 В (что является острым углом в прямоугольном треугольнике АВВ 1) не может быть равен углу ∠АВВ 1 , ведь данный угол - тупой по доказанному.

Значит наше предположение касательно расположения точек В и В 1 оказалось неверным, следовательно данные точки совпадают. А значит треугольники АВС и А 1 В 1 С 1 совместились наложением. Поэтому они равны (по определению).

Таким образом, данные признаки вводятся не зря, ведь их можно использовать при решении некоторых задач.

  1. Омский государственный университет ().
  2. Справочный портал calc.ru ().
  3. Учительский портал ().

1. № 38. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., под редакцией Садовничего В. А. Геометрия 7. М.: Просвещение. 2010 г.

2. Исходя из данных, указанных на рисунке, укажите равные треугольники, если они есть.

3. Исходя из данных, указанных на рисунке, укажите равные треугольники, если они есть. Учитывайте, что АС = АF.

4. В прямоугольном треугольнике к гипотенузе проведены медиана и высота. Угол между ними равен 20 о. Определите величину каждого из острых углов данного прямоугольного треугольника.

В курсе геометрии 7 класса были изучены, а на прошлом уроке – повторены, так называемые признаки равенства треугольников . Напомним их:

1-й признак (по 2 сторонам и углу между ними): если у треугольников равны две стороны и угол между ними, то такие треугольники равны между собой.

2-й признак (по стороне и двум прилежащим углам): если у треугольников равны сторона и два угла, прилежащие к данной стороне, то такие треугольники равны между собой. Примечание: пользуясь тем, что сумма углов треугольника постоянна и равна , легко доказать, что условие «прилежания» углов не является необходимым, то есть признак будет верен и в такой формулировке: «… равны сторона и два угла, то …».

3-й признак (по 3 сторонам): если у треугольников равны все три стороны, то такие треугольники равны между собой.

Естественно, все эти признаки остаются верными и для прямоугольных треугольников. Однако у прямоугольных треугольников есть одна существенная особенность – у них всегда есть пара равных прямых углов. Поэтому данные признаки для них упрощаются. Итак, сформулируем признаки равенства прямоугольных треугольников:

1-й признак (по двум катетам): если у прямоугольных треугольников катеты попарно равны, то такие треугольники равны между собой (см. Рис. 2).

Дано:

Рис. 2. Иллюстрация первого признака равенства прямоугольных треугольников

Доказать:

Доказательство: вспомним, что в прямоугольных треугольниках: . Значит, мы можем воспользоваться первым признаком равенства треугольников (по 2 сторонам и углу между ними) и получить: .

Доказано.

2-й признак (по катету и углу): если катет и острый угол одного прямоугольного треугольника равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны между собой (см. Рис. 3).

Дано:

Рис. 3. Иллюстрация второго признака равенства прямоугольных треугольников

Доказать:

Доказательство: сразу отметим, что тот факт, что равны углы, прилежащие к равным катетам, не является принципиальным. Действительно, сумма острых углов прямоугольного треугольника (по свойству 1) равна . Значит, если равна одна пара из этих углов, то равна и другая (так как их суммы одинаковы).

Доказательство же данного признака сводится к использованию второго признака равенства треугольников (по 2 углам и стороне). Действительно, по условию равны катеты и пара прилежащих к ним углов. Но вторая пара прилежащих к ним углов состоит из углов . Значит, мы можем воспользоваться вторым признаком равенства треугольников и получить: .



Доказано.

3-й признак (по гипотенузе и углу): если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны между собой (см. Рис. 4).

Дано:

Рис. 4. Иллюстрация третьего признака равенства прямоугольных треугольников

Доказать:

Доказательство: для доказательства этого признака можно сразу воспользоваться вторым признаком равенства треугольников – по стороне и двум углам (точнее, следствием, в котором указано, что углы не обязательно должны быть прилежащими к стороне). Действительно, по условию: , , а из свойств прямоугольных треугольников следует, что . Значит, мы можем воспользоваться вторым признаком равенства треугольников, и получить: .

Доказано.

4-й признак (по гипотенузе и катету): если гипотенуза и катет одного прямоугольного треугольника равны соответственно гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны между собой (см. Рис. 5).

Дано:

Рис. 5. Иллюстрация четвёртого признака равенства прямоугольных треугольников

Доказать:

Доказательство: для доказательства этого признака воспользуемся признаком равенства треугольников, который мы сформулировали и доказали на прошлом уроке, а именно: если у треугольников равны две стороны и больший угол, то такие треугольники являются равными. Действительно, по условию у нас есть две равных стороны. Кроме того, по свойству прямоугольных треугольников: . Осталось доказать, что прямой угол является наибольшим в треугольнике. Предположим, что это не так, значит, должен быть ещё хотя бы один угол, который больше . Но тогда сумма углов треугольника уже будет больше . Но это невозможно, а, значит, такого угла в треугольнике быть не может. Значит, прямой угол является наибольшим в прямоугольным треугольнике. А значит, можно воспользоваться сформулированным выше признаком, и получить: .



Доказано.

Сформулируем теперь ещё одно свойство, характерное только для прямоугольных треугольников.

Свойство

Катет, лежащий против угла в , в 2 раза меньше гипотенузы (см. Рис. 6).

Дано:

Доказать: AB

Доказательство: выполним дополнительное построение: продлим прямую за точку на отрезок, равный . Получим точку . Так как углы и – смежные, то их сумма равна . Поскольку , то и угол .

Значит, прямоугольные треугольники (по двум катетам: – общий, – по построению) – первый признак равенства прямоугольных треугольников.

Из равенства треугольников следует равенство всех соответствующих элементов. Значит, . Откуда: . Кроме того, (из равенства всё тех же треугольников). Значит, треугольник – равнобедренный (так как у него равны углы при основании), но равнобедренный треугольник, один из углов которого равен , – равносторонний. Из этого следует, в частности, что , что и требовалось доказать.

Доказано.

4. Свойство катета, лежащего против угла в

Стоит отметить, что верно и обратное утверждение: если в прямоугольном треугольнике гипотенуза в два раза больше одного из катетов, то острый угол, лежащий напротив этого катета, равен .

Сформулируем ещё один важный признак прямоугольного треугольника.

Примечание: признак означает, что если какое-то утверждение верно, то треугольник является прямоугольным. То есть признак позволяет идентифицировать прямоугольный треугольник.

Важно не путать признак со свойством – то есть, если треугольник прямоугольный, то у него есть такие свойства… Часто признаки и свойства являются взаимно обратными, но далеко не всегда. Например, свойство равностороннего треугольника: в равностороннем треугольнике есть угол . Но это не будет признаком равностороннего треугольника, так как не любой треугольник, у которого есть угол , является равносторонним.

Можно привести и более жизненный пример: свойство слова «хлеб» – в слове «хлеб» 4 буквы. Но наличие 4 букв не является признаком слова «хлеб», так как существует множество слов из 4 букв.

5. Признак прямоугольного треугольника (медиана равна половине стороны, к которой проведена)

Итак, признак прямоугольного треугольника :

Если в треугольнике медиана равна половине стороны, к которой она проведена, то данный треугольник является прямоугольным, причём медиана проведена из вершины прямого угла.

Примечание: напомним, что медиана – линия, соединяющая вершину треугольника с серединой противоположной стороны (см. Рис. 7).

Дано:

Доказать:

Доказательство: поскольку , то треугольники – равнобедренные. Значит, углы при основаниях каждого из этих треугольников равны. То есть, , . Тогда сумма углов треугольника равна Значит, . Но: , что и требовалось доказать.

Доказано.

В данном уроке мы рассмотрели основные свойства прямоугольных треугольников, изученные ранее в 7 классе. В частности, вспомнили признаки равенства, а также другие признаки и свойства прямоугольных треугольников.

Домашнее задание

1. В прямоугольном треугольнике , – биссектриса, . Найти длину катета , если см.

2. На гипотенузе прямоугольного треугольника обозначили точку так, что . Докажите, что точка равноудалена от точек , и .

3. Найти острые углы прямоугольного треугольника, если они относятся как 5:13.

4. Медиана , проведенная к гипотенузе, равняется см. .

5. В треугольнике , – биссектриса, . Отрезок на см меньше отрезка . Найти биссектрису .

Урок 5: Мно­го­уголь­ни­ки

На этом уроке мы при­сту­пим уже к новой теме и вве­дем новое для нас по­ня­тие «мно­го­уголь­ник». Мы рас­смот­рим ос­нов­ные по­ня­тия, свя­зан­ные с мно­го­уголь­ни­ка­ми: сто­ро­ны, вер­ши­ны углы, вы­пук­лость и невы­пук­лость. Затем до­ка­жем важ­ней­шие факты, такие как тео­ре­ма о сумме внут­рен­них углов мно­го­уголь­ни­ка, тео­ре­ма о сумме внеш­них углов мно­го­уголь­ни­ка. В итоге, мы вплот­ную по­дой­дем к изу­че­нию част­ных слу­ча­ев мно­го­уголь­ни­ков, ко­то­рые будут рас­смат­ри­вать­ся на даль­ней­ших уро­ках.

1. По­ня­тие «мно­го­уголь­ник»

В курсе гео­мет­рии мы изу­ча­ем свой­ства гео­мет­ри­че­ских фигур и уже рас­смот­ре­ли про­стей­шие из них: тре­уголь­ни­ки и окруж­но­сти. При этом мы об­суж­да­ли и кон­крет­ные част­ные слу­чаи этих фигур, такие как пря­мо­уголь­ные, рав­но­бед­рен­ные и пра­виль­ные тре­уголь­ни­ки. Те­перь при­шло время по­го­во­рить о более общих и слож­ных фи­гу­рах – мно­го­уголь­ни­ках .

С част­ным слу­ча­ем мно­го­уголь­ни­ков мы уже зна­ко­мы – это тре­уголь­ник (см. Рис. 1).

Рис. 1. Тре­уголь­ник

В самом на­зва­нии уже под­чер­ки­ва­ет­ся, что это фи­гу­ра, у ко­то­рой три угла. Сле­до­ва­тель­но, в мно­го­уголь­ни­ке их может быть много, т.е. боль­ше, чем три. На­при­мер, изоб­ра­зим пя­ти­уголь­ник (см. Рис. 2), т.е. фи­гу­ру с пятью уг­ла­ми.

Рис. 2. Пя­ти­уголь­ник. Вы­пук­лый мно­го­уголь­ник

Опре­де­ле­ние. Мно­го­уголь­ник – фи­гу­ра, со­сто­я­щая из несколь­ких точек (боль­ше двух) и со­от­вет­ству­ю­ще­го ко­ли­че­ства от­рез­ков, ко­то­рые их по­сле­до­ва­тель­но со­еди­ня­ют. Эти точки на­зы­ва­ют­ся вер­ши­на­ми мно­го­уголь­ни­ка, а от­рез­ки – сто­ро­на­ми . При этом ни­ка­кие две смеж­ные сто­ро­ны не лежат на одной пря­мой и ни­ка­кие две несмеж­ные сто­ро­ны не пе­ре­се­ка­ют­ся.

Опре­де­ле­ние. Пра­виль­ный мно­го­уголь­ник – это вы­пук­лый мно­го­уголь­ник, у ко­то­ро­го все сто­ро­ны и углы равны.

Любой мно­го­уголь­ник раз­де­ля­ет плос­кость на две об­ла­сти: внут­рен­нюю и внеш­нюю. Внут­рен­нюю об­ласть также от­но­сят к мно­го­уголь­ни­ку .

Иными сло­ва­ми, на­при­мер, когда го­во­рят о пя­ти­уголь­ни­ке , имеют в виду и всю его внут­рен­нюю об­ласть, и гра­ни­цу. А ко внут­рен­ней об­ла­сти от­но­сят­ся и все точки, ко­то­рые лежат внут­ри мно­го­уголь­ни­ка, т.е. точка тоже от­но­сит­ся к пя­ти­уголь­ни­ку (см. Рис. 2).

Мно­го­уголь­ни­ки еще ино­гда на­зы­ва­ют n-уголь­ни­ка­ми, чтобы под­черк­нуть, что рас­смат­ри­ва­ет­ся общий слу­чай на­ли­чия ка­ко­го-то неиз­вест­но­го ко­ли­че­ства углов (n штук).

Опре­де­ле­ние. Пе­ри­метр мно­го­уголь­ни­ка – сумма длин сто­рон мно­го­уголь­ни­ка.

Те­перь надо по­зна­ко­мить­ся с ви­да­ми мно­го­уголь­ни­ков. Они де­лят­ся на вы­пук­лые и невы­пук­лые . На­при­мер, мно­го­уголь­ник, изоб­ра­жен­ный на Рис. 2, яв­ля­ет­ся вы­пук­лым, а на Рис. 3 невы­пук­лым.

Рис. 3. Невы­пук­лый мно­го­уголь­ник

2. Вы­пук­лые и невы­пук­лые мно­го­уголь­ни­ки

Опре­де­ле­ние 1. Мно­го­уголь­ник на­зы­ва­ет­ся вы­пук­лым , если при про­ве­де­нии пря­мой через любую из его сто­рон весь мно­го­уголь­ник лежит толь­ко по одну сто­ро­ну от этой пря­мой. Невы­пук­лы­ми яв­ля­ют­ся все осталь­ные мно­го­уголь­ни­ки .

Легко пред­ста­вить, что при про­дле­нии любой сто­ро­ны пя­ти­уголь­ни­ка на Рис. 2 он весь ока­жет­ся по одну сто­ро­ну от этой пря­мой, т.е. он вы­пук­лый. А вот при про­ве­де­нии пря­мой через в че­ты­рех­уголь­ни­ке на Рис. 3 мы уже видим, что она раз­де­ля­ет его на две части, т.е. он невы­пук­лый.

Но су­ще­ству­ет и дру­гое опре­де­ле­ние вы­пук­ло­сти мно­го­уголь­ни­ка.

Опре­де­ле­ние 2. Мно­го­уголь­ник на­зы­ва­ет­ся вы­пук­лым , если при вы­бо­ре любых двух его внут­рен­них точек и при со­еди­не­нии их от­рез­ком все точки от­рез­ка яв­ля­ют­ся также внут­рен­ни­ми точ­ка­ми мно­го­уголь­ни­ка.

Де­мон­стра­цию ис­поль­зо­ва­ния этого опре­де­ле­ния можно уви­деть на при­ме­ре по­стро­е­ния от­рез­ков на Рис. 2 и 3.

Опре­де­ле­ние. Диа­го­на­лью мно­го­уголь­ни­ка на­зы­ва­ет­ся любой от­ре­зок, со­еди­ня­ю­щий две не со­сед­ние его вер­ши­ны.

3. Тео­ре­ма о сумме внут­рен­них углов вы­пук­ло­го n-уголь­ни­ка

Для опи­са­ния свойств мно­го­уголь­ни­ков су­ще­ству­ют две важ­ней­шие тео­ре­мы об их углах: тео­ре­ма о сумме внут­рен­них углов вы­пук­ло­го мно­го­уголь­ни­ка и тео­ре­ма о сумме внеш­них углов вы­пук­ло­го мно­го­уголь­ни­ка . Рас­смот­рим их.

Тео­ре­ма. О сумме внут­рен­них углов вы­пук­ло­го мно­го­уголь­ни­ка (n-уголь­ни­ка).

Где – ко­ли­че­ство его углов (сто­рон).

До­ка­за­тель­ство 1. Изоб­ра­зим на Рис. 4 вы­пук­лый n-уголь­ник.

Рис. 4. Вы­пук­лый n-уголь­ник

Из вер­ши­ны про­ве­дем все воз­мож­ные диа­го­на­ли. Они делят n-уголь­ник на тре­уголь­ни­ка, т.к. каж­дая из сто­рон мно­го­уголь­ни­ка об­ра­зу­ет тре­уголь­ник, кроме сто­рон, при­ле­жа­щих к вер­шине . Легко ви­деть по ри­сун­ку, что сумма углов всех этих тре­уголь­ни­ков как раз будет равна сумме внут­рен­них углов n-уголь­ни­ка. По­сколь­ку сумма углов лю­бо­го тре­уголь­ни­ка – , то сумма внут­рен­них углов n-уголь­ни­ка:

Что и тре­бо­ва­лось до­ка­зать.

До­ка­за­тель­ство 2. Воз­мож­но и дру­гое до­ка­за­тель­ство этой тео­ре­мы. Изоб­ра­зим ана­ло­гич­ный n-уголь­ник на Рис. 5 и со­еди­ним любую его внут­рен­нюю точку со всеми вер­ши­на­ми.

.

До­ка­за­но.

Из до­ка­зан­ной тео­ре­мы сле­ду­ет ин­те­рес­ный факт, что сумма внеш­них углов вы­пук­ло­го n-уголь­ни­ка равна от ко­ли­че­ства его углов (сто­рон). Кста­ти, в от­ли­чие от суммы внут­рен­них углов.

Далее мы более по­дроб­но будем ра­бо­тать с част­ным слу­ча­ем мно­го­уголь­ни­ков – че­ты­рех­уголь­ни­ка­ми. На сле­ду­ю­щем уроке мы по­зна­ко­мим­ся с такой фи­гу­рой, как па­рал­ле­ло­грамм, и об­су­дим его свой­ства.

До­маш­нее за­да­ние

1. Су­ще­ству­ет ли вы­пук­лый мно­го­уголь­ник, сумма углов ко­то­ро­го равна: а) ; б) ; в) ?

2. Най­ди­те углы че­ты­рех­уголь­ни­ка, если они про­пор­ци­о­наль­ны чис­лам 2, 3, 10 и 21. Вы­пук­лый или невы­пук­лый этот че­ты­рех­уголь­ник?

3. Вер­ши­ны вы­пук­ло­го пя­ти­уголь­ни­ка со­еди­не­ны через одну. Най­ди­те сумму углов при вер­ши­нах по­лу­чен­ной «звез­ды».

Урок 6: Параллелограмм

Данный урок посвящен одному из видов выпуклых четырехугольников, а именно – параллелограмму. Параллелограмм – один из частных видов четырехугольников, который включает в себя такие подвиды, как прямоугольник, ромб, квадрат – фигуры, с которыми каждый из нас знаком еще с детства. Мы рассмотрим определение и свойства параллелограмма, а также решим несколько примеров с использованием этих свойств.

Определение параллелограмма

На прошлом уроке мы рассмотрели понятие выпуклого многоугольника. Теперь изучим частный случай многоугольника – четырехугольник, а точнее – частный случай четырехугольника – параллелограмм .

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны (см. Рис. 1).

Рис. 1. Параллелограмм

То есть, если даны две параллельные прямые, которые пересекают еще две параллельные прямые, то они образуют фигуру, которая называется параллелограммом .

Из того, что – параллелограмм, можно сделать следующие выводы: . Верно и обратное утверждение: если , то четырёхугольник – параллелограмм.

Помимо данного определения, можно дать ещё несколько эквивалентных, однако мы остановимся именно на таком, классическом определении параллелограмма, и сформулируем свойства данной фигуры, пользуясь параллельностью её противоположных сторон.

Билет № 14

Многоугольник. Элементы многоугольника. Виды многоугольников. Сумма углов выпуклого многоугольника.

Рассмотрим фигуру, составленную из отрезков АВ, ВС, CD, ..., EF, FA так, что смежные отрезки (т. е. отрезки АВ и ВС, ВС и CD, ..., FA и АВ) не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Такая фигура называется многоугольником. Точки А, В, С, ..., Е, F называются вершинами, а отрезки АВ, ВС, CD, ..., EF, FA- сторонами многоугольника.

Сумма длин всех сторон называется периметром многоугольника.

Многоугольник с п вершинами называется п -угольником.

Две вершины многоугольника, принадлежащие одной стороне, называются соседними. Отрезок, соединяющий любые две несоседние вершины, называется диагональю многоугольника.

Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней, а другая - внешней областью многоугольника.

Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины. (Многоугольник ABCD – выпуклый, остальные не выпуклые)

Сумма углов выпуклого п -угольника равна (п -2) 180°.

Следствия: 1)Сумма углов любого треугольника равна 180 0

2) Сумма углов любого четырехугольника равна 360 0

Билет № 15

Доказать одно из свойств параллелограмма.

1°. В параллелограмме противоположные стороны равны и противоположные углы равны.

2°. Диагонали параллелограмма точкой пересечения делятся пополам.

Теорема Пифагора.

Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.



Справедлива теорема, обратная теореме Пифагора

Теорема : Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

С помощью этой теоремы, зная стороны треугольника, можно определять, является ли он прямоугольным

2. Синус, косинус, тангенс острого угла прямоугольного треугольника. Значения синуса, косинуса, тангенса и котангенса 30 0 , 45 0 , 60 0 .

Определение : Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Определение : Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Определение : Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

30 0 45 0 60 0
Sin A
Cos A
Tg A

Билет № 17

Билет № 18

теорема: Если 3 стороны одного треугольника пропорциональны 3 сторонам другого, то такие треугольники подобны.

Билет № 14

Признаки равенства прямоугольных треугольников. Доказательство одного из них.

Существует четыре признака равенства прямоугольных треугольников:

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. (АС=А 1 С 1 , ВС=В 1 С 1)

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. (например, АС=А 1 С 1 , ÐА=ÐА 1)

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. (например, АВ= A 1 B 1 , ÐА=ÐА 1)

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. (например, АВ= A 1 B 1 , АС=А 1 С 1)



Докажем признак по гипотенузе и острому углу.

Разделы: Математика

Тема: “Признаки равенства прямоугольных треугольников”

Цель: закрепление знаний (свойства прямоугольных треугольников), знакомство с некоторыми признаками равенства прямоугольных треугольников.

Ход урока:

I. Оргмомент.

II. Устно.

1. Ответить на вопросы:

  1. Назвать элементы прямоугольного треугольника.
  2. Какими свойствами обладают элементы прямоугольного треугольника?
  3. Докажите, что катет прямоугольного треугольника, лежащий против угла в 30 0 , равен половине гипотенузы.
  4. Докажите, что если катет прямоугольного треугольника равен половине гипотенузы, то угол лежащий против этого катета равен 30 0 .
  5. Найти x. Ответ выбрать из треугольника. Буквы какого-то слова находятся в секторах треугольника. Обсуждение в парах (3 мин).

Рисунок 1.

Составили слово “признак”.

III. Изучение нового материала

Изучая треугольники, мы говорим, что он обладает некоторыми свойствами и признаками. А какие признаки равенства треугольников вам известны? Мы сформулировали и доказали свойства прямоугольных треугольников, а сегодня рассмотрим признаки равенства прямоугольных треугольников, будем решать задачи с их применением.

Доказывая равенство треугольников, сколько пар соответственно равных элементов отыскивали? А возможно ли доказать равенство прямоугольных треугольников по двум катетам?

Перед вами два прямоугольных треугольника АВС и А 1 В 1 С 1 , у них соответственно равны катеты. Докажите, если это возможно, их равенство.

№1. (По двум катетам)

Рисунок 2.

Дано: АВС и А 1 В 1 С 1 , В=В 1 =90 0 , АВ = А 1 В 1 , ВС = В 1 С 1

Доказать: АВС = А 1 В 1 С 1

Как прозвучит признак? (Затем задача №1)

№2. (По катету и прилежащему к нему острому углу)

Рисунок 3.

Дано: АВС и А 1 В 1 С 1 , В=В 1 =90 0 , ВС = В 1 С 1, С= С 1

Доказать: АВС = А 1 В 1 С 1

Как прозвучит признак? (Затем задача №2)

№3. (По гипотенузе и острому углу)

Рисунок 4.

Дано: АВС и А 1 В 1 С 1 , В=В 1 =90 0 , АС = А 1 С 1, А= А 1

Доказать: АВС = А 1 В 1 С 1

Как прозвучит признак? (Затем задача №3)

Задачи. Найти равные треугольники и доказать их равенство.

Рисунок 5.

IV. Закрепление изученного на уроке.

Решить следующую задачу.

Рисунок 6.

Дано: АВС, А 1 В 1 С 1 , DAB=CBA=90 0 , АD = BD

Доказать: CAB=DBA.

Обсуждение в четверках (3 мин).

Зачем задача из учебника №261 с записью.

Рисунок 7.

Дано: АВС – равнобедренный, AD и CE – высота АВС

Доказать: AD = CE

Доказательство:

V. Задание на дом.

П.35 (три признака), №261 (доказать, что АОС - равнобедренный), №268 (признак равенства прямоугольных треугольников по катету и противолежащему углу).

На следующем уроке геометрии мы продолжим знакомство с признаками равенства прямоугольных треугольников. Отметки выставлю также в следующий раз по результатам за 2 урока.

Дополнительно. Найти равные треугольники.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата?

Правильно, .

А площадь меньшего?

Конечно, .

Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами.

Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников?

Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны.

А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Ну вот, теперь, применяя и комбинируя эти знания с другими, ты решишь любую задачу с прямоугольным треугольником!

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее.

Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты: