Азотная кислота характеристика вещества. Урок "азотная кислота, состав, строение молекулы, физические и химические свойства, получение"


Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV .

Физические свойства

Азотная кислота HNO 3 в чистом виде - бесцветная жид­кость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см 3 . В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

Под действием света азотная кислота частично разлагается с выделением N О 2 и за c чет этого приобретает светло-бурый цвет:

N 2 + O 2 грозовые эл . разряды → 2NO

2NO + O 2 → 2NO 2

4Н N О 3 свет → 4 N О 2 (бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

Получение

1. Лабораторный способ

KNO 3 + H 2 SO 4 (конц) → KHSO 4 + HNO 3 ­ (при нагревании)

2. Промышленный способ

Осуществляется в три этапа :

a) Окисление аммиака на платиновом катализаторе до NO

4NH 3 + 5O 2 → 4NO + 6H 2 O (Условия: катализатор – Pt , t = 500˚С)

б) Окисление кислородом воздуха NO до NO 2

2NO + O 2 → 2NO 2

в) Поглощение NO 2 водой в присутствии избытка кислорода

4NO 2 + О 2 + 2H 2 O ↔ 4HNO 3

или3 NO 2 + H 2 O ↔ 2 HNO 3 + NO (без избытка кислорода)

Тренажёр "Получение азотной кислоты"

Применение

  • в производстве минеральных удобрений;
  • в военной промышленности;
  • в фотографии - подкисление некоторых тонирующих растворов;
  • в станковой графике - для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).
  • в производстве взрывчатых и отравляющих веществ

Вопросы для контроля:

№1. Степень окисления атома азота в молекуле азотной кислоты

a. +4

b. +3

c. +5

d. +2

№2. Атом азота в молекуле азотной кислоты имеет валентность равную -

a. II

b. V

c. IV

d. III

№3. Какими физическими свойствами характеризуют чистую азотную кислоту?

a. без цвета

b. не имеет запаха

c. имеет резкий раздражающий запах

d. дымящая жидкость

e. окрашена в жёлтый цвет

№4. Установите соответствие между исходными веществами и продуктами реакции:

a) NH 3 + O 2

1) NO 2

b) KNO 3 + H 2 SO 4

2) NO 2 + О 2 + H 2 O

c) HNO 3

3) NO + H 2 O

d) NO + O 2

4)KHSO 4 + HNO 3 ­

№5. Расставьте коэффициенты методом электронного баланса, покажите переход электронов, укажите процессы окисления (восстановления; окислитель (восстановитель):

NO 2 + О 2 + H 2 O ↔ HNO 3

Азотная кислота: свойства и реакции,
лежащие в основе производства

9 класс

Приходя на урок химии, ребята хотят узнать новое и применить свои знания, особенно им нравится самостоятельно добывать информацию и экспериментировать. Данный урок построен так, чтобы, изучая новый материал, учащиеся могли привлечь ранее приобретенные знания: строение атома азота, типы химической связи, электролитическая диссоциация, окислительно-восстановительные реакции, техника безопасности при проведении эксперимента.

Цели. Повторить классификацию и свойства оксидов азота, а также общие свойства азотной кислоты в свете теории электролитической диссоциации (ТЭД). Познакомить учащихся с окислительными свойствами азотной кислоты на примере взаимодействия разбавленной и концентрированной кислоты с металлами. Дать понятие о способах получения азотной кислоты и областях ее применения.

Оборудование. На каждом столе перед учащимися план урока, схема взаимодействия азотной кислоты с металлами, набор реактивов, тесты для закрепления изученного материала.

П л а н у р о к а

Оксиды азота.

Состав и строение молекулы азотной кислоты.

Физические свойства азотной кислоты.

Химические свойства азотной кислоты.

Получение азотной кислоты.

Применение азотной кислоты.

Закрепление материала (тест по вариантам).

ХОД УРОКА

Оксиды азота

Учитель. Вспомните и напишите формулы оксидов азота. Какие оксиды называются солеобразующими, какие – несолеобразующими? Почему?

Ученики самостоятельно записывают формулы пяти оксидов азота, называют их, вспоминают азотсодержащие кислородные кислоты и устанавливают соответствие между оксидами и кислотами. Один из учеников записывает на доске (таблица).

Таблица

Сопоставление оксидов азота, кислот и солей

Демонстрационный опыт:
взаимодействие оксида азота(IV) с водой

Учитель. В сосуд с NO 2 приливаем немного воды и взбалтываем содержимое, затем испытываем полученный раствор лакмусом.

Что наблюдаем? Раствор краснеет из-за образовавшихся двух кислот.

2NO 2 + H 2 O = HNO 2 + HNO 3 .

Степень окисления азота в NO 2 равна +4, т.е. она является промежуточной между +3 и +5, которые в растворе более устойчивы, поэтому оксиду азота(IV) соответствуют сразу две кислоты – азотистая и азотная.

Состав и строение молекулы

Учитель. На доске запишите молекулярную формулу азотной кислоты, вычислите ее молекулярную массу и отметьте степени окисления элементов. Составьте структурную и электронную формулы.

Ученики составляют следующие формулы (рис. 1).

Рис. 1. Неверные структурная и электронная формулы азотной кислоты

Учитель. Согласно этим формулам вокруг азота вращается десять электронов, но этого не может быть, т.к. азот находится во втором периоде и максимально на внешнем слое у него может быть только восемь электронов. Это противоречие устраняется, если предположить, что между атомом азота и одним из атомов кислорода образуется ковалентная связь по донорно-акцепторному механизму (рис. 2).

Рис. 2. Электронная формула азотной кислоты.
Электроны атома азота обозначены черными точками

Тогда структурную формулу азотной кислоты можно было бы изобразить так (рис. 3):

Рис. 3. Структурная формула азотной кислоты
(донорно-акцепторная связь показана стрелкой)

Однако опытным путем доказано, что двойная связь равномерно распределена между двумя атомами кислорода. Степень окисления азота в азотной кислоте равна +5, а валентность (обратите внимание) равна четырем, ибо имеются только четыре общие электронные пары.

Физические свойства азотной кислоты

Учитель. Перед вами флаконы с разбавленной и концентрированной азотной кислотой. Опишите физические свойства, которые вы наблюдаете .

Ученики описывают азотную кислоту как жидкость тяжелее воды, желтоватого цвета, с резким запахом. Раствор азотной кислоты без цвета и без запаха.

Учитель. Я добавлю, что температура кипения азотной кислоты +83 °С, температура замерзания –41 °С, т.е. при обычных условиях это жидкость. Резкий запах и то, что при хранении она желтеет, объясняется тем, что концентрированная кислота малоустойчива и под действием света или при нагревании частично разлагается.

Химические свойства кислоты

Учитель. Вспомните, с какими веществами взаимодействуют кислоты? (Учащиеся называют.)

Перед вами реактивы, проделайте перечисленные реакции* и запишите свои наблюдения (реакции записывать надо в свете ТЭД).

А теперь обратимся к специфическим свойствам азотной кислоты.

Мы отметили, что кислота при хранении желтеет, теперь докажем это химической реакцией:

4HNO 3 = 2H 2 O + 4NO 2 + O 2 .

(Учащиеся самостоятельно записывают электронный баланс реакции.)

Выделяющийся «бурый газ» (NO 2) окрашивает кислоту.

Особо ведет себя эта кислота по отношению к металлам. Вы знаете, что металлы вытесняют водород из растворов кислот, но при взаимодействии с азотной кислотой этого не происходит.

Посмотрите на схему у вас на парте (рис. 4), где показано, какие газы выделяются при реакции кислоты различной концентрации с металлами. (Работа со схемой.)

Рис. 4. Схема взаимодействия азотной кислоты с металлами

Демонстрационный опыт:
взаимодействие концентрированной азотной кислоты с медью

Очень эффективна демонстрация реакции азотной кислоты (конц.) с порошком меди или мелко нарезанными кусочками медной проволоки:

Учащиеся самостоятельно записывают электронный баланс реакции:

Получение кислоты

Учитель. Урок будет неполным, если мы не рассмотрим вопрос получения азотной кислоты.

Лабораторный способ: действие концентрированной серной кислоты на нитраты (рис. 5).

NaNO 3 + H 2 SO 4 = NaHSO 4 + HNO 3 .

В промышленности кислоту в основном получают аммиачным способом.

Рис. 5. Для получения азотной кислоты в лаборатории до сих пор
удобно использовать старинную химическую посуду – реторту

Способ получения кислоты из азота и кислорода при температуре свыше 2000 °С (электродуговой) особого распространения не получил.

В России история получения азотной кислоты связана с именем химика-технолога Ивана Ивановича Андреева (1880–1919).

Он в 1915 г. создал первую установку по производству кислоты из аммиака и реализовал разработанный способ в заводском масштабе в 1917 г. Первый завод был построен в Донецке.

Этот метод включает несколько этапов.

1) Подготовка аммиачно-воздушной смеси.

2) Окисление аммиака кислородом воздуха на платиновой сетке:

4NH 3 + 5O 2 = 4NO + 6H 2 O.

3) Дальнейшее окисление оксида азота(II) до оксида азота(IV):

2NO + O 2 = 2NO 2 .

4) Растворение оксида азота(IV) в воде и получение кислоты:

3NO 2 + H 2 O = 2HNO 3 + NO.

Если растворение проводить в присутствии кислорода, то весь оксид азота(IV) переходит в азотную кислоту.

5) Заключительный этап получения азотной кислоты – очистка газов, выходящих в атмосферу, от оксидов азота. Состав этих газов: до 98% азота, 2–5% кислорода и 0,02–0,15% оксидов азота. (Азот изначально был в воздухе, взятом для окисления аммиака.) Если оксидов азота в этих отходящих газах больше 0,02%, то специально проводят каталитическое восстановление их до азота, потому что даже такие малые количества этих оксидов приводят к большим экологическим проблемам.

После всего сказанного возникает вопрос: а зачем нам нужна кислота?

Применение кислоты

Учитель. Азотную кислоту используют для производства: азотных удобрений, и в первую очередь аммиачной селитры (как ее получают?); взрывчатых веществ (почему?); красителей; нитратов, о которых речь пойдет на следующем уроке.

Закрепление материала

Фронтальный опрос класса

– Почему степень окисления азота в азотной кислоте +5, а валентность четыре?

– С какими металлами азотная кислота не вступает в реакцию?

– Вам нужно распознать соляную и азотную кислоты, на столе три металла – медь, алюминий и железо. Как вы поступите и почему?

Тест

В а р и а н т 1

1. Какой ряд чисел соответствует распределению электронов по энергетическим уровням в атоме азота?

1) 2, 8, 1; 2) 2, 8, 2; 3) 2, 4; 4) 2, 5.

2. Закончите уравнения практически осуществимых реакций:

1) HNO 3 (разб.) + Cu … ;

2) Zn + HNO 3 (конц.) … ;

3) HNO 3 + MgCO 3 … ;

4) CuO + KNO 3 … .

3. Укажите, какое уравнение иллюстрирует одну из стадий процесса промышленного производства азотной кислоты.

1) 4NH 3 + 5O 2 = 4NO + 6H 2 O;

2) 5HNO 3 + 3P + 2H 2 O = 3H 3 PO 4 + 5NO;

3) N 2 + O 2 = 2NO.

4. Отрицательная степень окисления проявляется азотом в соединении:

1) N 2 O; 2) NO; 3) NO 2 ; 4) Na 3 N.

5. Взаимодействие медной стружки с концентрированной азотной кислотой приводит к образованию:

1) NO 2 ; 2) NO; 3) N 2 ; 4) NH 3 .

В а р и а н т 2

1. Значение высшей валентности азота равно:

1) 1; 2) 2; 3) 5; 4) 4.

2. Запишите возможное взаимодействие концентрированной азотной кислоты со следующими металлами: натрий, алюминий, цинк, железо, хром.

3. Выберите вещества, являющиеся сырьем для производства азотной кислоты:

1) азот и водород;

2) аммиак, воздух и вода;

3) нитраты.

4. Концентрированная азотная кислота не реагирует с:

1) углекислым газом;

2) соляной кислотой;

3) углеродом;

4) гидроксидом бария.

5. При взаимодействии очень разбавленной кислоты с магнием образуется:

1) NO 2 ; 2) NO; 3) N 2 O; 4) NH 4 NO 3 .

Ответы на тесты

В а р и а н т 1.

1 – 4;

1) 8HNO 3 (разб.) + 3Cu = 3Cu(NO 3) 2 + 2NO + 4H 2 O;

2) Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O;

3) 2HNO 3 + MgCO 3 = Mg(NO 3) 2 + CO 2 + H 2 O;

3 – 1; 4 – 4; 5 – 1.

В а р и а н т 2.

1 – 4;

Na + 2HNO 3 (конц.) = NaNO 3 + NO 2 + H 2 O,

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O;

3 – 2; 4 – 1; 5 – 4.

* Например, можно предложить ребятам проделать следующие лабораторные опыты.

1) В пробирку с раствором азотной кислоты добавьте лакмус и постепенно добавляйте раствор гидроксида натрия. Наблюдения запишите.

2) Положите в пробирку немного мела, добавьте разбавленную азотную кислоту.

3) Положите в пробирку немного оксида меди(II), добавьте разбавленную азотную кислоту. Какого цвета раствор? Зажмите пробирку в держателе и погрейте. Как изменяется цвет раствора? О чем говорит изменение цвета? – Прим. ред .

Азотистая кислота - это одноосновная слабая кислота, которая может существовать только в разбавленных водных растворах голубого цвета и в газовой форме. Соли данной кислоты называют азотистокислым или нитритами. Они токсичны и более устойчивы, чем сама кислота. Химическая формула данного вещества выглядит так: HNO2.

Физические свойства:
1. Молярная масса равна 47 г/моль.
2. равна 27 а.е.м.
3. Плотность составляет 1,6.
4. Температура плавления равна 42 градусам.
5. Температура кипения равна 158 градусам.

Химические свойства азотистой кислоты

1. Если раствор с азотистой кислотой нагреть, то произойдет следующая химическая реакция:
3HNO2 (азотистая кислота) = HNO3 (кислота азотная) + 2NO выделяется в виде газа)+ H2O (вода)

2. В водных растворах диссоциирует и легко вытесняется из солей более сильными кислотами:
H2SO4 (серная кислота) + 2NaNO2 (нитрит натрия) = Na2SO4 (сульфат натрия) + 2HNO2 (азотистая кислота)

3. Рассматриваемое нами вещество может проявлять как окислительные, так и восстановительные свойства. При воздействии на него более сильных окислителей (например: хлор, пероксид водорода H2O2, окисляется до азотной кислоты (в некоторых случаях происходит образование соли азотной кислоты):

Восстановительные свойства:

HNO2 (азотистая кислота) + H2O2 (пероксид водорода) = HNO3 (азотная кислота) + H2O (вода)
HNO2 + Cl2 (хлор) + H2O (вода) = HNO3 (кислота азотная) + 2HCl (соляная кислота)
5HNO2 (азотистая кислота)+ 2HMnO4 = 2Mn(NO3)2 (нитрат марганца, соль азотной кислоты) + HNO3 (кислота азотная) + 3H2O (вода)

Окислительные свойства:

2HNO2 (азотистая кислота)+ 2HI = 2NO (оксид кислорода, в виде газа) + I2 (йод) + 2H2O (вода)

Получение азотистой кислоты

Данное вещество можно получить несколькими способами:

1. При растворении азота оксида (III) в воде:

N2O3 (оксид азота) + H2O (вода) = 2HNO3 (азотистая кислота)

2. При растворении азота оксида (IV) в воде:
2NO3 (оксид азота) + H2O (вода) = HNO3 (азотная кислота) + HNO2 (азотистая кислота)

Применение азотистой кислоты:
- диазотирование ароматических первичных аминов;
- производство солей диазония;
- в синтезе органических веществ (например, для производства органических красителей).

Воздействие азотистой кислоты на организм

Данное вещество токсично, обладает ярким мутагенным эффектом, так как по сути своей является деаминирующим агентом.

Что такое нитриты

Нитриты - это различные соли азотистой кислоты. К воздействию температур они менее устойчивы, чем нитраты. Необходимы при производстве некоторых красителей. Применяются в медицине.

Особенное значение приобрел для человека нитрит натрия. Это вещество имеет формулу NaNO2. Используется в качестве консерванта в пищевой промышленности при производстве изделий из рыбы и мяса. Представляет собой порошок чистого белого или слегка желтоватого цвета. Нитрит натрия гигроскопичен (исключение составляет очищенный нитрит натрия) и хорошо растворяется в H2O (воде). На воздухе способен постепенно окислиться до имеет сильные восстановительные свойства.

Натрия нитрит применяется в:
- химическом синтезе: для получения диазо-аминных соединений, для дезактивирования избытка натрия азида, для получения кислорода, натрия оксида и натрия азота, для поглощения углекислого газа;
- в производстве пищевых продуктов (пищевая добавка Е250): в качестве антиокислителя и антибактериального агента;
- в строительстве: в качестве противоморозной добавки к бетону в изготовлении конструкций и строительных изделий, в синтезе органических веществ, в роли ингибитора коррозии атмосферной, в производстве каучуков, попперсов, раствора добавки для взрывчатых веществ; при обработке металла для снятия слоя олова и при фосфатировании;
- в фотографии: как антиокислитель и реагент;
- в биологии и медицине: сосудорасширяющее, спазмолитическое, слабительное, бронхолитическое; как антидот при отравлении животного или человека цианидами.

В настоящее время также используются и другие соли азотистой кислоты (например, нитрит калия).

Окислительные свойства азотной кислоты.

ОВР в статье специально выделены цветом . Обратите на них особое внимание. Эти уравнения могут попасться в ЕГЭ.

– в любом виде (и разбавленная, и концентрированная) является сильным окислителем.

Причем, разбавленная восстанавливается глубже, чем концентрированная.

Окислительные свойства обеспечиваются азотом в высшей степени окисления +5

Какая валентность у азота в этом соединении? Вопрос очень хитрый, многие отвечают на него корректно. У азота в азотной кислоте валентность IV .

Атом азота не может образовать больше ковалентных связей, посмотрите на электронную диаграмму:

Три связи с каждым атомом кислорода, и четвертая как бы распределяется, образуется полуторная связь. Таким образом, валентность азота IV, а степень окисления +5

Первое самое интересное свойство: взаимодействие с металлами.

Водород при взаимодействии с металлами никогда не выделяется

Схема реакции азотной кислоты (и разбавленной, и концентрированной) с металлами:

HNO 3 + Ме → нитрат + H 2 O + продукт восстановленного азота

Два нюанса:

1. , и с концентрированной азотной кислотой в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.

2. С платиной и золотом концентрированная азотная кислота не реагирует вообще.

Чтобы понять до чего вообще может восстанавливаться азот, посмотрим на диаграмму его степеней окисления:

Азот +5 – окислитель, будет восстанавливаться, то есть понижать степень окисления.

Все возможные продукты восстановления азотной на диаграмме обведены красным.

(Не все конечно, такие реакции вообще что угодно дать могут, но в ЕГЭ образуются только эти).

Определить какой именно продукт будет образовываться можно чисто логически:

  • до таких низких степеней окисления как -3 или +1, с образованием продуктов NH 4 NO 3 или N 2 O соответственно, азот восстанавливают только достаточно сильные, активные металлы: щелочные — 1-я группа главная подгруппа, щелочноземельные, а так же Al и Zn . Как ранее уже было сказано, разбавленная кислота восстанавливается глубже, поэтому при взаимодействии активных металлов с конц. азотной кислотой образуется N 2 O , а при взаимодействии с разб. азотной кислотой NH 4 NO 3 .

4Ba + 10HNO 3( конц .) → 4Ba(NO 3 ) 2 + 5H 2 O + N 2 O

4Ba + 10HNO 3( разб .) → 4Ba(NO 3 ) 2 + 3H 2 O + NH 4 NO 3

8Li + 10HNO 3( конц .) → 8LiNO 3 + 5H 2 O + N 2 O

8Li + 10HNO 3( разб .) → 8LiNO 3 + 3H 2 O + NH 4 NO 3

8Al + 30HNO 3( конц .) (t)→ 8Al(NO 3 ) 3 + 15H 2 O + 3N 2 O

8Al + 30HNO 3( разб .) → 8Al(NO 3 ) 3 + 9H 2 O + 3NH 4 NO 3

Остальные металлы восстанавливают азотную кислоту до +2 или +4, с образованием продуктов соответственно: NO или O 2 .

Разбавленная кислота восстанавливается глубже

  • при взаимодействии с ней металлов, не отличающихся особой активностью, будет образовываться NO . Ну а с конц. азотной NO 2:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 + 2H 2 O + 2NO 2

3Cu + 8HNO 3( разб .) → 3Cu(NO 3 ) 2 + 4H 2 O + 2NO

Fe + 6HNO 3( конц .) (t)→ Fe(NO 3 ) 3 + 3H 2 O + 3NO 2

Fe + 4HNO 3( разб .) → Fe(NO 3 ) 3 + 2H 2 O + NO

(обратите внимание, что железо окисляется до высшей степени окисления)

Ag + 2HNO 3( конц .) → AgNO 3 + H 2 O + NO 2

3Ag + 4HNO 3( разб .) → 3AgNO 3 + 2H 2 O + NO

Если тяжело сразу понять всю логичность выбора, вот таблица:

А зотная кислота окисляет неметаллы до высших оксидов .

Так как неметаллы – не такие сильные восстановители, как активные металлы, азот может восстановиться только до +4, образовав NO 2 или NO соответственно.

При окислении неметаллов концентрированной азотной кислотой образуется бурый газ (NO 2), а если кислота разбавленная, то образуется NO . Схемы реакций следующие:

неметалл + HNO 3 (разб.) → + NO

неметалл + HNO 3 (конц.) → соединение неметалла в высшей степени окисления + NO 2

4 HNO 3(конц.) CO 2 + 2 H 2 O + 4 NO 2

3C + 4HNO 3( разб .) → 3CO 2 + 2H 2 O + 4NO

(угольная кислота не образуется, так как она не стабильна)

5HNO 3( конц .) → H 3 PO 4 + H 2 O + 5 NO 2

3P + 5HNO 3( разб .) + 2H 2 O → 3H 3 PO 4 + 5NO

+ 3 HNO 3( конц .) → H 3 BO 3 + 3NO 2

B + HNO 3( разб .) + H 2 O → H 3 BO 3 + NO

6HNO 3( конц .) → H 2 SO 4 + 2H 2 O + 6NO 2

S + 2HNO 3( разб .) H 2 SO 4 + 2 NO

  • концентрированная азотная кислота окисляет сероводород. Окисление идет глубже при нагревании:

2HNO 3( конц .) + H 2 S → S↓ + 2NO 2 + 2H 2 O

H 2 S + 8HNO 3(конц.) H 2 SO 4 + 8 NO 2 + 4 H 2 O

  • концентрированная азотная кислота окисляет сульфиды до сульфатов:

CuS + 8HNO 3(конц.) CuSO 4 + 4 H 2 O + 8 NO 2

  • азотная кислота настолько сурова, что может окислить даже . Только один – иод. Разбавленная восстанавливается глубже: до +2, концентрированная до +4. А вот иод окисляется не до высшей степени окисления +7 (слишком круто), а до +5, образуя иодноватую кислоту HIO 3:

10 HNO 3(конц.) + I 2 (t)→ 2HIO 3 + 10NO 2 + 4H 2 O

10 HNO 3(разб.) + 3 I 2 (t) → 6HIO 3 + 10NO + 2H 2 O

  • концентрированная азотная кислота реагирует с хлоридами и фторидами. Только следует понимать, что с фторидами и хлоридами протекает обычная реакция ионного обмена с вытеснением галогеноводорода и образованием нитрата:

NaCl (тв.) + HNO 3(конц.) → HCl + NaNO 3

NaF (тв.) + HNO 3(конц.) → HF + NaNO 3

  • А вот с бромидами и иодидами (и с бромоводородами, и с иодоводородами) протекает ОВР. В обоих случаях образуется свободный галоген, а азот восстанавливается до NO 2:

8HNO 3( конц .) + 6KBr ( тв .) → 3Br 2 + 4H 2 O + 6KNO 3 + 2NO 2

4HNO 3( конц .) + 2NaI ( тв .) → 2NaNO 3 + 2NO 2 + 2H 2 O + I 2

7HNO 3( конц .) + NaI → NaNO 3 + 6NO 2 + 3H 2 O + HIO 3

То же самое происходит при взаимодействии с иодо- и бромоводородами:

2HNO 3( конц .) + 2HBr → Br 2 + 2NO 2 + 2H 2 O

6HNO 3( конц .) + HI → HIO 3 + 6NO 2 + 3H 2 O


Реакции с золотом, магнием, медью и серебром

Подробности Категория: Просмотров: 7174

АЗОТНАЯ КИСЛОТА , HNO 3 , получается растворением окислов азота в воде:

3NO 2 + H 2 O = 2HN 3 + NO
N 2 O 3 + H 2 O = HNO 3 + NO
N 2 O 5 + H 2 O = 2HNO 3

Физические свойства азотной кислоты . Молярный вес - 63,016; бесцветная жидкость с характерным запахом; температура кипения 86°, температура плавления -47°; удельный вес 1,52 при 15°; при перегонке благодаря разложению 2HNО 3 = N 2 О 3 + 2О + H 2 О азотная кислота тотчас выделяет кислород, N 2 О 3 и воду; поглощение последней вызывает повышение температуры кипения. В водном растворе крепкая азотная кислота обычно содержит окислы азота , и приготовление совершенно безводной азотной кислоты представляет значительные затруднения. Получить безводную азотную кислоту перегонкой невозможно, так как минимум упругости имеют водные растворы азотной кислоты, т. е. прибавление воды к кислоте и обратно понижает упругость пара (и повышает температуру кипения). Поэтому в результате перегонки слабой кислоты (D < 1,4) получается постоянно кипящий остаток D = 1,415, с содержанием 68% HNО 3 и с температурой кипения 120°,5 (735 мм). Перегонка при пониженном давлении дает остаток с меньшим содержанием HNО 3 , при повышенном давлении - с большим содержанием HNO 3 . Кислота D = 1,503 (85%), очищенная продуванием воздуха от N 2 О 4 , дает при перегонке остаток с 77,1% HNО 3 . Кислота D = 1,55 (99,8%) дает при перегонке сначала сильно окрашенный окислами азота раствор D = 1,62, а в остатке кислоту D = 1,49. Т. о. в остатке при перегонке азотной кислоты всегда оказывается кислота, соответствующая минимуму упругости (максимуму температуры кипения). Безводную кислоту можно получить лишь при смешивании крепкой (99,1%) азотной кислоты с азотным ангидридом.

Вымораживанием, по-видимому, нельзя получить кислоту свыше 99,5%. При новых способах (Валентинера) добывания азотной кислоты из селитры, кислота получается достаточно чистой, при старых приходилось ее очищать преимущественно от хлористых соединений и от паров N 2 О 4 . Наиболее крепкая кислота имеет D 0 = 1,559, D 15 = 1,53, а 100%-ная HNO 3 - D 4 = 1,5421 (Велей и Манлей); 100%-ная кислота дымит на воздухе и притягивает пары воды столь же сильно, как и серная кислота. Кислота с D = 1,526 при смешивании со снегом нагревается.

Теплоты образования (из 1 / 2 Н 2 + 1 / 2 N 2 + 3 / 2 O 2):

HNO 3 – пар + 34400 cal
HNO 3 – жидкость + 41600 cal
HNO 3 – кристаллы + 42200 cal
HNO 3 – раствор + 48800 cal

Теплоты разведения: при прибавлении к HNO 3 одной частицы Н 2 O - 3,30 Cal, двух частиц - 4,9 Cal, пяти частиц - 6,7 Cal, десяти - 7,3 Cal. Дальнейшее прибавление дает ничтожное повышение теплового эффекта. В виде кристаллов получаются:
1) HNO 3 ·H 2 O = H 3 NO 4 - ромбические, напоминающие AgNО 3 таблички, температура плавления = -34° (-38°);
2) HNО 3 (H 2 O) 2 = H 5 NO 5 - иглы, температура плавления -18°,2, устойчивы лишь ниже -15°. Кривая температур кристаллизации водной кислоты имеет три эвтектики (при -66°,3, при -44°,2, при -43°) и два максимума (HNО 3 ·H 2 О -38°, HNО 3 ·3H 2 О -18°,2). Те же особенные точки наблюдаются для теплот растворения и для переломов кривой электропроводности, но на последней еще замечены 2HNO 3 ·Н 2 О и HNО 3 ·10Н 2 О. Из только что сказанного и по аналогии с фосфорными кислотами следует, что в растворах азотной кислоты имеется ее гидрат HNO 3 , но он очень легко разлагается, что и обусловливает высокую реакционную способность HNO 3 . Азотная кислота, содержащая в растворе NO 2 , называется дымящей (красной).

Химические свойства . Чистая HNO 3 легко разлагается и окрашивается в желтоватый цвет благодаря реакции 2HNO 3 = 2NO 2 + O 2 + H 2 Oи поглощению образовавшегося азотноватого ангидрида. Чистая азотная кислота и вообще крепкая азотная кислота устойчива лишь при низкой температуре. Основным признаком азотной кислоты является ее чрезвычайно сильная окислительная способность за счет отдачи кислорода. Так, при действии на металлы (кроме Pt, Rh, Ir, Au, на которые HNО 3 при отсутствии хлора не действует) азотная кислота окисляет металл с выделением окислов азота тем меньшей степени окисления, чем энергичнее в качестве восстановителя был окисляемый металл. Например, свинец (Рb) и олово (Sn) дают N 2 O 4 ; серебро - преимущественно N 2 O 3 . Сера, особенно свежеосажденная, окисляется легко, фосфор при легком подогревании превращается в фосфористую кислоту. Уголь, накаленный докрасна, загорается в парах азотной кислоты и в самой азотной кислоте. Окисляющее действие дымящей красной кислоты больше, чем бесцветной. Железо, погруженное в нее, делается пассивным и уже не поддается действию кислоты. На циклические органические соединения (бензол, нафталин и т. п.) азотная кислота безводная или в смеси с серной кислотой, действует очень сильно, давая нитросоединения С 6 Н 5 Н + HNО 3 = C 6 H 5 NO 2 + НОН. Нитрация парафинов идет медленно, притом только при действии слабой кислоты (большая степень ионизации). В результате взаимодействия веществ, содержащих гидроксил (глицерин, клетчатка), с азотной кислотой получаются азотнокислые эфиры, неправильно называемые нитроглицерином, нитроклетчаткой и т. п. Все опыты и всю работу с азотной кислотой необходимо вести в хорошо вентилируемом помещении, но лучше под специальной тягой.

Анализ . Для обнаружения следов азотной кислоты применяют: 1) дифенилэнданилодигидротриазол (в продаже - «нитрон»); 5 или 6 капель 10 %-ного раствора нитрона в 5 %-ной уксусной кислоте приливают к 5-6 см 3 исследуемого раствора, прибавив к нему заранее одну каплю H 2 SО 4: в случае присутствия заметных количеств ионов NО 3 выделяется обильный осадок, при очень слабых растворах выделяются игольчатые кристаллы; при 0° можно открыть при помощи нитрона даже 1 / 80000 HNО 3 ; 2) бруцин вводном растворе; смешивают с исследуемым раствором и осторожно приливают по стенке пробирки к крепкой серной кислоте; на месте соприкосновения обоих слоев в пробирке образуется розовато-красное окрашивание, переходящее снизу в зеленоватое.

Для определения количества HNО 3 в растворе дымящей азотной кислоты нужно протитровать N 2 О 4 раствором КМnO 4 , определить плотность жидкости ареометром и вычесть указанную в особой таблице поправку на содержание N 2 O 4 .

Промышленные способы добывания азотной кислоты . Добывается азотная кислота гл. обр. из селитры. Раньше добывание селитры велось в т. н. «селитряницах» (salpetriere), или «буртах», где, в результате перемешивания навоза, мочи и т. и. со старой штукатуркой, постепенно, отчасти благодаря действию бактерий, происходит окисление мочевины и других органических соединений азота (амины, амиды и т. п.) в азотной кислоте, образующую с известняком кальциевую селитру. В жаркие дни, особенно на юге (например, в Индии и в Средней Азии), процесс идет очень быстро.

Во Франции в 1813 г. добывали из селитряниц до 2000000 кг селитры. 25 крупных животных дают около 500 кг селитры в год. В некоторых местностях, с основной почвой, богатой животными остатками (например, Кубанская область), возможно наличие в почве заметного, но недостаточного для добывания, количества селитры. Заметные количества добывались в долине Ганга и находятся в наших среднеазиатских крепостях, где запасы содержащей селитру почвы доходят до 17 т в каждом месте, но содержание в ней селитры не больше 3%. Залежи натриевой селитры – чилийской - были открыты в 1809 г.; они находятся преимущественно в провинции Тарапака, между 68° 15" и 70° 18" восточной долготы и 19° 17" и 21° 18" южной широты, но встречаются и южнее и севернее (в Перу и в Боливии); месторождение их расположено на высоте 1100 м над уровнем моря. Залежи имеют протяжение около 200 км длины, 3-5 км ширины, содержание NaNO 3 в среднем 30-40%. Запасов, принимая ежегодный рост потребления в 50000 т, может хватить на 300 лет. В 1913 г. вывезено 2738000 т, но вывоз в Европу несколько уменьшился, хотя, после очень заметного падения вывоза во время войны, он снова несколько повысился с 1920 г. Обычно сверху лежит «костра» (50 см - 2м толщины), состоящая из кварцевого и полевошпатового песка, а под ней «калихе» (25 см - 1,5 м), содержащая селитру (залежи находятся в пустыне рядом с залежами соли и борнокальциевой соли). Состав «калихе» очень разнообразен; в нем NaNО 3 - от 30% до 70%, йодистых и йодноватых солей - до 2%, хлористого натрия - 16-30%, сернокислых солей - до 10%, магниевых - до 6%. Лучшие сорта содержат в среднем: NaNO 3 - 50%, NaCl - 26%, Na 2 SO 4 - 6%, MgSO 4 - 3%. Растворение NaNO 3 ведется при высокой температуре, чтобы в раствор перешло гораздо больше NaNО 3 , чем NaCl, растворимость которого незначительно увеличивается с температурой. Из 3 т «калихе» получается 1 т сырой селитры со средним содержанием 95-96% селитры. Из 1 л маточного рассола обычно получается 2,5-5 г йода. Обычно сырая селитра бурого цвета, из-за примеси окиси железа. Для удобрения применяют селитру, содержащую до 1-2% хлористых соединений. Чистый азотнокислый натрий бесцветен, прозрачен, не гигроскопичен, если не содержит хлористых соединений; кристаллизуется в кубах. Для получения азотной кислоты селитру нагревают с серной кислотой; взаимодействие идет по уравнению:

NaNO 3 + H 2 SO 4 = HNO 3 + NaSO 4

т. e. получают кислый сульфат. Последний можно применить для добывания хлороводорода прокаливанием смеси NaHSО 4 и NaCl в муфелях. Для взаимодействия по уравнению

теоретически необходимо взять на 100 кг NaNО 3 57,6 кг H 2 SО 4 или 60 кг кислоты 66° Вẻ. В действительности, во избежание разложения, серной кислоты берут на 20-30% больше. Взаимодействие ведут в горизонтальных цилиндрических железных ретортах 1,5 м длины, 60 см диаметром, со стенками в 4 см толщины. В каждый цилиндр входит 75 кг селитры и 75 кг H 2 SО 4 . Пары проводят сначала через керамиковый холодильник, охлаждаемый водой, или через наклонную керамиковую трубу, потом через поглотители: «баллоны» или «бонбоны», т. е. большие керамиковые «вульфовы склянки». Если взята серная кислота 60° Вẻ (71%) и в первый поглотитель помещено 4 кг воды на 100 кг селитры, то получится кислота в 40-42° Вẻ (38-41%); применив кислоту в 66° Вẻ (99,6%) и сухую селитру, получим 50° Вẻ (53%); для получения кислоты в 36° Вẻ, в первый поглотитель помещают 8 л воды, во второй - 4 л, а в следующие по 2,6 л. Дымящую азотную кислоту получают, действуя на селитру вдвое меньшим количеством серной кислоты, чем следует по расчету. Поэтому способу получается кислота, загрязненная хлористым нитрозилом и другими веществами, отходящими в начале процесса, и окислами азота - в конце отгонки. Окислы азота сравнительно легко отогнать, продувая через кислоту ток воздуха. Гораздо выгоднее работа в ретортах, охватываемых со всех сторон огнем и имеющих снизу трубу для выпуска бисульфата, содержащего заметное количество кислоты. Дело в том, что чугун не разъедается кислотой, если он достаточно нагрет и если соприкосновение огнем со всех сторон гарантирует от осаждения капель кислоты. В подобных ретортах (1,20 шириной и 1,50 м диаметром, с толщиной стенок 4-5 см) селитру обрабатывают серной кислотой из расчета 450 кг и даже 610 кг селитры на 660 кг H 2 SО 4 (66° Вẻ). Вместо баллонов теперь часто применяют вертикальные трубы или соединяют эти трубы с баллонами.

По способу Гутмана разложение производится в чугунных ретортах, составленных из нескольких частей (фиг. 1 и 1а); части соединены замазкой, состоящей обычно из 100 ч. железных опилок, 5 ч. серы, 5 ч. хлористого аммония с возможно малым количеством воды; реторты и, по возможности, загрузочный люк заключены в кирпичную кладку и нагреваются печными газами.

В реторту загружают 800 кг селитры и 800 кг 95%-ной серной кислоты и ведут перегонку 12 час.; при этом тратится около 100 кг угля. Применяются также и цилиндрические реторты. Выделяющиеся пары попадают сначала в баллон 8; затем проходят ряд керамиковых труб, 12 и 13, помещенных в деревянный короб с водой; здесь пары сгущаются в азотную кислоту, которая стекает по трубам 22 установки Гутмана, и 23 в сборник 28, сюда же попадает и конденсат из баллона 8; не сгустившаяся в трубах 12 азотная кислота попадает через 15а в башню, заполненную шарами и омываемую водой; последние следы кислоты, не поглощенные в башне, улавливаются в баллоне 43а; газы же через трубу 46а уносятся в дымовую трубу. Для окисления образующихся при перегонке окислов азота к газам непосредственно при выходе из реторты примешивается воздух. Если в производстве применяется крепкая серная кислота и высушенная селитра, то получается бесцветная 96-97%-ная азотная кислота. Почти вся кислота конденсируется в трубах, лишь малая часть (5%) поглощается в башне, давая 70%-ную азотную кислоту, которую прибавляют к следующей загрузке селитры. Т. о. получается бесцветная азотная кислота, лишенная хлора, с выходом в 98-99% от теории. Способ Гутмана получил большое распространение в виду простоты и дешевизны установки.

Из селитры добывают 96-100%-ную кислоту по способу Валентинера, перегонкой под уменьшенным давлением (30 мм) в чугунных ретортах смеси из 1000 кг NaNО 3 , 1000 кг H2SО 4 (66°Вẻ) и такого количества слабой кислоты HNO 3 , чтобы с ней ввести 100 кг воды. Перегонка идет 10 час., причем все время вводится воздух в сплав. Взаимодействие идет при 120°, но в конце процесса происходит «кризис» (1 час) и возможны сильные толчки (при 120-130°). После этого нагрев доводится до 175-210°. Весьма важно правильное сгущение и улавливание кислоты. Пары из реторты поступают в баллон, из него в 2 сильно охлаждаемых змеевика, из них в сборник (типа вульфовой склянки), за ним снова поставлен змеевик и дальше 15 баллонов, за которыми помещен насос. При 1000 кг загрузки NaNО 3 в 6-8 ч. получается 600 кг HNO 3 (48° Вẻ), т. е. 80% от нормы.

Для получения азотной кислоты из норвежской селитры (кальциевой) последнюю растворяют, добавляют крепкую азотную кислоту и примешивают серную кислоту, после чего отфильтровывают азотную кислоту от гипса.

Хранение и упаковка . Для хранения азотной кислоты можно применять стеклянную, шамотовую и чисто алюминиевую (не больше 5% примесей) посуду, а также посуду из специальной кремнистой кислотоупорной стали Круппа (V2A). Т. к. при действии крепкой азотной кислоты на дерево, опилки, тряпки, смоченные растительным маслом, и т. п. возможны вспышки и пожары (например, если лопнет бутыль при перевозке), то перевозить азотную кислоту можно лишь в специальных поездах. Особенно легко при нагревании вспыхивает скипидар при попадании в крепкую азотную кислоту.

Применение : 1) в виде солей для удобрения, 2) для получения взрывчатых веществ, 3) для получения полуфабрикатов для красящих веществ, а отчасти и самих красителей. Гл. обр. применяются соли азотной кислоты или селитры (натриевая, аммонийная, кальциевая и калийная) для удобрений. В 1914 г. мировое потребление азота в виде чилийской селитры достигало 368000 т и в виде азотной кислоты из воздуха - 10000 т. В 1925 г. потребление должно было дойти до 360000 т азотной кислоты из воздуха. Потребление азотной кислоты сильно возрастает во время войны в виду траты на взрывчатые вещества, главными из которых являются нитроглицерин и нитроклетчатки разных типов, нитросоединения (нитротолуол, тротил, мелинит и т. д.) и вещества для запалов (гремучая ртуть). В мирное время азотная кислота тратится на добывание нитросоединений, например, нитробензола, для перехода к красителям через анилин, получающийся из нитробензола восстановлением. Значительное количество азотной кислоты применяется для травления металлов; соли азотной кислоты (селитры) применяются для взрывчатых веществ (аммонийная селитра - в бездымных, калийная - в дымных порохах) и для фейерверков (бариевая селитра - для зеленого цвета).

Стандарт азотной кислоты . Стандарт азотной кислоты существует пока только в СССР и утвержден Комитетом по стандартизации при СТО в качестве общесоюзного обязательного стандарта (ОСТ-47) для кислоты в 40° Вẻ. Стандарт устанавливает содержание HNО 3 в азотной кислоте в 61,20% и ограничивает содержание примесей: серной кислоты не более 0,5%, хлора не более 0,8%, железа не более 0,01%, твердого остатка не более 0,9%; стандартная азотная кислота не должна содержать осадка. Стандарт регулирует взаимоотношения продавца и покупателя, жестко регламентируя методику отбора проб и производства анализов. Содержание азотной кислоты определяется прибавлением к кислоте NaOH и обратным титрованием кислотой. Содержание серной кислоты определяется в виде BaSО 4 осаждением ВаСl 2 . Содержание хлора определяют титрованием в щелочной среде азотнокислым серебром. Содержание железа определяют осаждением полуторных окислов аммиаком, восстановлением окисного железа в закисное и последующим титрованием КМnO 4 . Упаковка азотной кислоты не носит пока стандартного характера. Не касаясь размера, веса и качества тары, стандарт обусловливает упаковку азотной кислоты в стеклянную посуду и дает указания, как ее упаковывать и закупоривать.

Получение азотной кислоты.

I. Из воздуха . Синтез азотной кислоты из воздуха при действии вольтовой дуги повторяет до известной степени процесс, совершающийся в природе под влиянием разрядов атмосферного электричества. Кавендиш первый наблюдал (в 1781 г.) образование окислов азота при горении Н 2 в воздухе, а затем (в 1784 г.) и при проскакивании электрической искры через воздух. Мутман и Гофер в 1903 г. первые попытались изучить равновесие: N 2 + О 2 2NO. Пропуская через воздух вольтову дугу переменного тока в 2000-4000 V, они практически добились концентрации NО от 3,6 до 6,7 объемных %. Расход энергии на 1 кг HNО 3 у них достигал 7,71 kWh. Это равновесие изучал затем Нернст, пропуская воздух через иридиевую трубку. Далее в том же направлении работали Нернст с Еллинеком и др. исследователи. Путем экстраполирования экспериментальных результатов исследования равновесия между воздухом и окисью азота Нернсту удалось вычислить, что в правой части уравнения устанавливается при температуре 3750° (т. е. приблизительно при температуре вольтовой дуги) содержание 7 объемных % NО.

Приоритет идеи технического использования вольтовой дуги для фиксации атмосферного азота принадлежит французской исследовательнице Лефебр, которая еще в 1859 г. запатентовала в Англии свой метод получения азотной кислоты из воздуха. Но в то время стоимость электрической энергии была слишком высока, чтобы метод Лефебр мог получить практическое значение. Следует указать еще на патенты Мак Дугаля (Ан. П. 4633, 1899 г.) и на осуществленный в техническом масштабе метод Bradley и Lovejoy, эксплуатировавшийся в 1902 г. американской фирмой Atmospheric Products С° (с 1 млн. долл. капитала) с использованием энергии Ниагарского водопада. К этому же времени следует отнести попытки использования напряжения в 50000 V для фиксации атмосферного азота, сделанные Ковальским и его сотрудником И. Мосьцицким. Но первый существенный успех в деле фабрикации азотной кислоты из воздуха принесла историческая идея норвежского инженера Биркелянда, которая заключалась в том, чтобы использовать для повышения выходов окислов азота при пропускании через воздух вольтовой дуги способность последней растягиваться в сильном электромагнитном поле. Эту мысль Биркелянд совместил с другим норвежским инженером Эйде претворил в техническую установку, сразу же давшую рентабельную возможность получения из воздуха азотной кислоты. Благодаря постоянной перемене направления токаи действию электромагнита образующееся пламя вольтовой дуги имеет все время тенденцию как бы раздуваться в разные стороны, что приводит к образованию быстро перемещающейся все время со скоростью до 100 м/сек вольтовой дуги, создающей впечатление спокойно горящего широкого электрического солнца диаметром в 2 м и более. Через это солнце непрерывно продувается сильная струя воздуха, а самое солнце заключено в окованную медью особую печь из огнеупорной глины (фиг. 1, 2 и 3).

Полые электроды вольтовой дуги изнутри охлаждаются водой. Воздух через каналы а в шамотовой кладке печи поступает в дуговую камеру b; через с окисленный газ покидает печь и охлаждается с использованием его тепла для нагревания котлов выпаривательных аппаратов. После этого NО поступает в окислительные башни, где окисляется за счет кислорода воздуха до NO 2 . Последний процесс является процессом экзотермическим (2NO + О 2 = 2NО 2 + 27Cal), и поэтому условия, увеличивающие поглощение тепла, значительно способствуют реакции в этом направлении. Далее, двуокись азота поглощается водой согласно следующим уравнениям:

3NO 2 + H 2 O = 2HNO 3 + NO
2NO 2 + H 2 O = HNO 3 + HNO 2

По другому способу, реагирующую смесь газов перед поглощением охлаждают ниже 150°; при этой температуре обратное разложение – NO 2 = NO + O почти не имеет места. Имея в виду, что при некоторых условиях равновесие NO + NО 2 N 2 О 3 устанавливается с максимальным содержанием N 2 О 3 , можно получить, поливая горячие нитритные газы еще до полного их окисления, при температуре от 200 до 300°, раствором соды или едкого натра, вместо азотнокислых солей - чистые нитриты (метод Norsk Hydro). При выходе из печи продуваемый воздух содержит от 1 до 2% окислов азота, которые сейчас же улавливаются встречными струями воды и затем нейтрализуются известью с образованием кальциевой, так наз. «норвежской» селитры. На проведение самого процесса N 2 + О 2 2NO - 43,2 Cal требуется затрата сравнительно лишь незначительного количества электрической энергии, а именно: для получения 1 тонны связанного азота в виде NО лишь 0,205 kW-года; между тем в лучших современных установках приходится затрачивать в 36 раз больше, т. е. около 7,3 и до 8 kW-лет на 1 тонну. Другими словами, свыше 97% затрачиваемой энергии идет не на образование NО, а на создание для этого процесса благоприятных условий. Чтобы сдвинуть равновесие в сторону возможно большего содержания NО, необходимо пользоваться температурой от 2300 до 3300° (содержание NО при 2300° - 2 объемных % и для 3300° - 6 объемных %), но при таких температурах 2NO быстро распадается обратно на N 2 + О 2 . Поэтому в небольшую долю секунды необходимо удалить газ из горячих областей в более холодные и охладить его хотя бы до 1500°, когда распад NО протекает более медленно. Равновесие N 2 + О 2 2NО устанавливается при 1500° в 30 ч., при 2100° - в 5 сек., при 2500° - в 0,01 сек. и при 2900° - в 0,000035 сек.

Существенными усовершенствованиями по сравнению с методом Биркелянда и Эйде отличается метод Шонгерра, сотрудника BASF. В этом методе, вместо пульсирующего и действующего все же с перебоями прерывистого пламени вольтовой дуги переменного тока, применяется спокойное пламя сильного постоянного тока. Этим предотвращается весьма вредное для процесса частое задувание пламени. Такого же результата, впрочем, можно достигнуть и при вольтовой дуге переменного тока, но продувая воздух через сожигательное пламя не прямолинейно, а в виде вихревого ветра вдоль пламени вольтовой дуги. Поэтому печь м. б. сконструирована в виде довольно узкой металлической трубки, притом т. о., чтобы пламя дуги не касалось ее стенок. Схема конструкции печи Шонгерра изображена на фиг. 4.

Дальнейшее усовершенствование в дуговой метод вносит метод Паулинга (фиг. 5). Электроды в сожигательной печи имеют вид роговых разрядников. Образующаяся между ними вольтова дуга в 1 м длиной вздувается сильной струей воздуха кверху. В наиболее узком месте оборвавшееся пламя дуга вновь зажигается при помощи дополнительных электродов.

Несколько иная конструкция печи для окисления азота воздуха запатентована И. Мосьцицким. Один из обоих электродов (фиг. 6) имеет форму плоского диска и находится от другого электрода на весьма близком расстоянии. Верхний электрод трубчатый, и через него поступают быстрой струей нейтральные газы, распространяющиеся затем конусом.

Пламя, вольтовой дуги приведено в круговое движение под влиянием электромагнитного поля, а быстрая конусообразная струя газа препятствует коротким замыканиям. Подробное описание всей установки приведено у В. Waeser, Luftstickstoff-Industrie, р. 475, 1922. По методу И. Мосьцицкого работает один завод в Швейцарии (Chippis, Wallis), вырабатывая 40%-ную НNO 3 . Другой завод в Польше (Bory-Jaworzno) рассчитан на 7000 kW и должен вырабатывать концентрированную НNO 3 и (NH 4) 2 SO 4 . Для улучшения выходов окислов азота и для повышения пламени вольтовой дуги, в последнее время применяется в качестве исходного продукта не воздух, а более богатая кислородом смесь азота и кислорода, с отношением 1: 1. С такой смесью работает французский завод в Ларош-де-Рам с очень хорошим результатом.

Получаемую четырехокись азота N 2 О 4 целесообразно сгущать в жидкость путем охлаждения до -90°. Такая жидкая четырехокись азота, полученная из предварительно высушенных газов - кислорода и воздуха, не реагирует с металлами и поэтому может транспортироваться в стальных бомбах и служить для изготовления HNО 3 крепких концентраций. В качестве охлаждающей жидкости в этом случае одно время применялся толуол, но, вследствие неизбежного просачивания окислов азота и действия их на толуол, на заводах Tschernewitz (в Германии) и Bodio (в Швейцарии) случились страшные взрывы, разрушившие оба предприятия. Извлечение N 2 О 4 из газовой смеси м. б. достигнуто также при помощи абсорбции N 2 О 4 силикагелем, выделяющим при нагревании поглощенный N 2 О 4 обратно.

II. Контактным окислением аммиака . Все описанные методы получения синтетической азотной кислоты непосредственно из воздуха, как уже было указано, рентабельны лишь при наличии дешевой гидроэлектрической энергии. Проблема связанного азота (см. Азот) не могла бы считаться окончательно разрешенной, если бы не был найден способ получения сравнительно дешевой синтетической азотной кислоты. Усвоение связанного азота удобрений растениями особенно облегчено, если эти удобрения представляют собою соли азотной кислоты. Аммонийные соединения, внесенные в почву, должны предварительно подвергнуться нитрификации в самой почве (см. Азотные удобрения). Кроме того, азотная кислота, наравне с серной кислотой, является основой многочисленных отраслей химической промышленности и военного дела. Получение взрывчатых веществ и бездымного пороха (тротил, нитроглицерин, динамит, пикриновая кислота и мн. др.), анилиновых красок, целлулоида и искусственного шелка, многих медикаментов и т. д. невозможно без азотной кислоты. Поэтому-то в Германии, отрезанной во время мировой войны блокадой от источника чилийской селитры и в то же время не располагавшей дешевой гидроэлектрической энергией, в значительной степени развилось производство синтетической азотной кислоты по контактному методу, исходя из каменноугольного или синтетического аммиака путем окисления его кислородом воздуха при участии катализаторов. Во время войны (1918 г.) в Германии производилось до 1000 т азотной кислоты и азотнокислого аммония в день.

Еще в 1788 г. Мильнером в Кембридже была установлена возможность окисления NH 3 в окислы азота при действии перекиси марганца при нагревании. Кульман в 1839 г. установил контактное действие платины при окислении аммиака воздухом. Технически же метод окисления аммиака до азотной кислоты был разработан Оствальдом и Брауэром и запатентован ими в 1902 г. (Интересно, что в Германии заявка Оствальда была отклонена в виду признания приоритета за французским химиком Кульманом.) При действии мелкораздробленной платины и медленном течении газовой смеси, окисление идет по реакции 4NH 3 + ЗО 2 = 2N 2 + 6H 2 О. Поэтому процесс д. б. строго регулирован как в смысле значительной скорости движения газовой струи, продуваемой через контактный «конвертор», так и в смысле состава газовой смеси. Поступающая в «конверторы» смесь газов д. б. предварительно тщательно очищена от пыли и примесей, которые могли бы «отравить» платиновый катализатор.

Можно предполагать, что присутствие платины вызывает распад молекулы NН 3 и образование нестойкого промежуточного соединения платины с водородом. При этом азот in statu nascendi подвергается окислению кислородом воздуха. Окисление NH 3 до HNО 3 протекает по следующим реакциям:

4NH 3 + 5О 2 = 4NO + 6Н 2 0;

охлажденный бесцветный газ NО, будучи смешан с новой порцией воздуха, самопроизвольно окисляется дальше с образованием NО 2 или N 2 О 4:

2NО + О 2 = 2NО 2 , или N 2 O 4 ;

растворение образовавшихся газов в воде в присутствии избытка воздуха или кислорода связано с дальнейшим окислением по реакции:

2NO 2 + О + Н 2 О = 2HNO 3 ,

после чего получается HNО 3 , крепостью примерно от 40 до 50%. Путем перегонки, полученной HNО 3 с крепкой серной кислотой, можно получить, наконец, концентрированную синтетическую азотную кислоту. По Оствальду, катализатор должен состоять из металлической платины, покрытой частью или вполне губчатой платиной или платиновой чернью.

Реакция должна протекать при едва начавшемся красном калении и при значительной скорости течения газовой смеси, состоящей из 10 и более частей воздуха на 1 ч. NH 3 . Медленное течение газовой смеси способствует полному распаду NH 3 до элементов. При платиновой контактной сетке в 2 см скорость течения газа д. б. 1-5 м/сек, т. е. время соприкосновения газа с платиной не должно превышать 1 / 100 сек. Оптимальные температуры лежат около 300°. Смесь газа предварительно нагревается. Чем больше скорость течения газовой смеси, тем больше и выход NО. Работая с применением очень густой платиновой сетки (катализатора) со смесью аммиака с воздухом, содержащей около 6,3% NH 3 , Нейман и Розе получили при температуре 450° следующие результаты (при контактной поверхности платины в 3,35 см 2):

Большее или меньшее содержание NH 3 также имеет большое значение для направления химического процесса, который может идти или по уравнению: 4NH 3 + 5О 2 = 4NO + 6Н 2 О (при содержании 14,38% NH 3), или по уравнению: 4NH 3 + 7О 2 = 4NО 2 + 6Н 2 О (при содержании в смеси 10,74% NH 3). С меньшим успехом, чем платина, м. б. применены и другие катализаторы (окись железа, висмута, церия, тория, хрома, ванадия, меди). Из них внимания заслуживает только применение окиси железа при температуре 700-800°, с выходом от 80 до 85% NH 3 .

Значительную роль при окислительном процессе перехода NH 3 в HNО 3 играет температура. Самая реакция окисления аммиака экзотермична: 4NH 3 + 5О 2 = 4NО + 6H 2 О + 215,6 Cal. Лишь первоначально необходимо подогреть контактный аппарат,-далее реакция идет за счет собственной теплоты. Техническая конструкция «конверторов» для окисления аммиака разных систем понятна из приведенных рисунков (фиг. 7-8).

Схема производства HNO 3 по принятому в настоящее время методу Франка-Каро приведена на фиг. 9.

На фиг. 10 представлена схема окисления NH 3 на фабрике Мейстера Люциуса и Брюннинга в Гехсте.

В современных установках окисление NH 3 до NО осуществляется с выходом до 90%, а последующее окисление и поглощение образовавшихся окислов азота водой - с выходом до 95%. Т. о., весь процесс дает выход связанного азота в 85-90%. Получение HNО 3 из селитры обходится в настоящее время (в пересчете на 100%-ную HNО 3) в 103 долл. за 1 т, по дуговому процессу 97 долл. 30 цент, за 1 т, в то время как 1 т HNО 3 , полученной окислением NH -3 обходится всего 85 долл. 80 цент. Само собою разумеется, что эти цифры м. б. только примерными и в значительной степени зависят от величины предприятия, стоимости электрической энергии и сырья, но все же они показывают, что контактному методу получения HNО 3 суждено занять в ближайшем будущем господствующее положение сравнительно с остальными методами.

См. также