Экзоскелет. Прошлое, настоящее и будущее суперкостюмов

Человек, от природы обделенный защитными приспособлениями, на протяжении многих веков старался восполнить этот пробел эволюции. Со времен самых первых военных конфликтов он защищал себя от вражеского оружия дублеными шкурами, бронзовыми панцирями, а затем кольчугой и латами. Но реалии современной войны диктуют свои условия. Помимо легкости и прочности новые виды защиты должны обладать рядом свойств, которые до этого считались лишь плодом воображения писателей-фантастов.

    Впервые идея экзоскелета, что в переводе с греческого означает «внешний скелет», возникла во второй половине XIX века. Эдвард Сильвестер Эллис в своем романе 1868 года «Паровой человек в прериях» описал изобретение, по форме напоминающее человеческое тело и работающее на паровой тяге. Гениальный создатель этой чудо-машины Джонни Брейнерд, разместившись внутри такого костюма, мог с легкостью разгоняться до скорости в 100 км/ч. Чем он, собственно, и пользовался, охотясь на буйволов и распугивая дикарей.

  1. Благодаря комиксу «Железный человек» в 1961 году, когда персонаж Стэна Ли набирал популярность, Пентагон понял, чего им не хватает для успешного ведения боевых действий. Все просто. Им нужен костюм, превращающий человека в танк. Боец, облачившись в чудо-костюм, должен становиться быстрым, маневренным, выдерживать высокий уровень радиации, защищать от химического и биологического оружия. Но самое главное позволять переносить сверхтяжелые грузы.
  1. «Hardiman» экзоскелет, созданный в 60-х, благодаря совместным усилиям инженеров из General Electric и United States military. Оператор такого костюма мог при усилии в 4,5 кг поднять вес в 110 кг. Однако сам «Hardiman» весил 680 кг, а при стыковке всех частей в полный экзоскелет костюм начинал производить интенсивные и абсолютно неконтролируемые движения, которые, испытывайся он на живом человеке, могли бы разорвать оператора на части.

    В начале 2000-х годов, после того как Пентагон выделил 75 миллионов долларов на разработку чуда-костюма, экзоскелет перестал быть фантастикой. Американская компания Sarcos разработала костюм «XOS», который удовлетворяет большей части требований Пентагона. Он улавливает сокращения мускулов оператора и переводит их в электрические сигналы, которые, в свою очередь, осуществляют движение устройства. По приблизительным подсчетам экзокостюм увеличивает силу человека в 20 раз. Но у него нет аккумуляторов, поэтому работает он исключительно от сети. Дальнейшее развитие XOS (которых уже, кстати, существует два вида) проводит компания Raytheon, поглотившая Sarcos.

    Японцы, чья поп-культура просто пронизана всевозможными гаджетами и робототехникой, в конце прошлого десятилетия активно приступили к разработкам своего экзоскелета. И первый костюм, представленный ими, получил название «HAL». Он был разработан фирмой Cyberdyne и, в отличие от американского «XOS», считывает сигналы с кожи человека при помощи сенсоров, отправляет их в компьютер, который уже определяет, какие сервоприводы активировать. «HAL» легче американского аналога и питается от подвешенного на поясе аккумулятора на 100 вольт, но физическую силу он увеличивает всего в пять раз.

    Основной проблемой солдата, за исключением, конечно, огня противника, является повышенная нагрузка на спину. Озаботившись этим, Lockheed Martin (основной подрядчик Пентагона) совместно с Parker Hannifin разрабатывают экзоскелет HULC (Human Universal Load Carrier), который призван увеличить мобильность солдата на поле боя. Отличительными особенностями этой разработки станет возможность носить ее под одеждой. Солдат, облаченный в «HULC», сможет переносить груз в 100 кг без особых трудностей на расстояние до 20 км. На данный момент разработка Human Universal Load Carrier находится на второй стадии развития.

    Lockheed планирует выпускать экзоскелет Mantis (Богомол). Он будет предназначен для применения в отраслях, где работникам нужно держать тяжелое оборудование продолжительное время. Он будет иметь специальную механическую руку, поглощающую всю тяжесть инструментов. Испытания уже показали 30% увеличения производительности. Американский военпром уже заинтересовался данным изделием.

    В феврале 2014 года президент США Барак Обама в одном из своих выступлений намекнул на то, что удалось создать настоящий костюм Железного человека (Iron man). Это заявление оказалось шуткой, однако лишь наполовину. Еще в мае прошлого года было заявлено о начале разработок сверхлегкого тактического атакующего экзокостюма TALOS (Tactical Assault Light Operator Suit). Он предназначен для повышения эффективности и защиты солдат, участвующих в спецоперациях. Облаченный в него солдат сможет видеть ночью и будет обладать большой физической силой. Также, благодаря ученым из Массачусетсткого технологического университета, новый экзокостюм будет оснащен «жидкой броней». Такая броня затвердевает за долю секунды из-за созданного вокруг нее силового поля. Теоретически это означает, что в TALOS можно передвигаться непосредственно под градом вражеских пуль.

    Бортовые компьютеры будущих экзокостюмов будут не только оказывать помощь в принятии решений на поле боя, но и контролировать физическое состоянии оператора. Благодаря встроенным датчикам жизнеобеспечения командование всегда будет знать, кому из бойцов нужна срочная помощь.

    Также, помимо шагающих экзоскелетов, разрабатываются и летающие версии. Компания Trek Aerospace разработала устройство Springtail. С помощью него солдат сможет подниматься в воздух и развивать скорость до 100 км/ч, а также зависать в воздухе на высоте нескольких тысяч метров.

  1. Если вы считаете, что подобные разработки ведутся только за рубежом, то вы глубоко заблуждаетесь. 20 августа 2013 года на «Дне инноваций Министерства обороны РФ» был представлен первый действующий образец экзоскелета для штурмовых отрядов. Данная модификация получила название ExoAtlet P-1 и создана для снятия нагрузки при переносе штурмового щита. Экзоатлет оснащен устройствами для фиксации и быстрого снятия 35-килограммового щита. При использовании этого экзокостюма у бойца освобождаются руки для ведения боя.

    На данный момент в России ведутся разработки экзоскелета для медицинских целей. В «ЭкзоАтлет Мед» сейчас открыт набор пилотов для ускорения реализации программы. Им может стать любой желающий с нарушениями опорно-двигательного аппарата и локомоторных функций. Просто нужно заполнить соответствующую анкету на официальном сайте.

    По-настоящему боевой экзоскелет еще так и не создан, а ученые уже придумали, чем его можно дополнить. Geckskin – это особая ткань, которая разработана по принципу лапок геккона и позволяет осуществлять сверхпрочное сцепление с любой поверхностью. Кусочек такой ткани размером с тетрадный лист может удержать более 300 кг. Следовательно солдат, облаченный в экзокостюм, сможет не только быть сильным, высоко прыгать и быстро бегать, но еще и карабкаться по отвесным стенам.

    Если вы, дочитав до этого момента, задались вопросом: «Почему до сих пор нет ни одного полностью рабочего и удовлетворяющего всем требований экзоскелета?» то задумайтесь, сколько стоит собрать хотя бы один такой прототип? Такая же схема, как с сотовыми телефонами, эволюционировавшими за 20 лет до смартфонов, здесь не пройдет. Слишком много технологий, механизмов, а также особых физических материй, которые не упростить за пару десятилетий.

  1. Самой главной проблемой всех экзоскелетов является аккумулятор. Сейчас не существует более надежного и экономного способа хранения энергии, чем литиево-ионные батареи. Но у них тоже есть свой максимальный рубеж емкости, после которого они превращаются в бомбу. Поэтому до тех пор, пока не будет найден альтернативный и безопасный источник хранения большого количества энергии, экзокостюмы будут сильно ограничены в возможностях.

По ходу своего развития человечество всегда воплощало в реальность то, что до этого считалось лишь плодом фантазии, особенно если это касается средств ведения войны. Поэтому нет никаких сомнений, что в обозримом будущем боевые действия будут вестись небольшими группами суперсолдат в экзокостюмах. Тем более что, с точки зрения многих фантастов, это безопаснее, чем создавать сверхумных роботов, которые в итоге могут стать причиной уничтожения всего живого на Земле.

Разорвать воздух на скорости звука и устремиться к горизонту, вытянув руки по швам в своём железном костюме. В мгновение ока оказаться в любой точке земного шара без необходимости стоять в пробке. Летать без крыльев, не будучи на борту самолёта или чего покрепче. Пусть бросит в меня камень тот, кто не хотел оказаться на месте Тони Старка в его звёздные моменты (конечно, в костюме Железного человека). Частично эти мечты сумеет реализовать экзоскелет - устройство, который может увеличить способности человека (по большей части физические, мускульную силу) за счет внешнего каркаса. О том, что собой представляет это устройство, какие наработки уже имеются и как технологии будут развиваться в будущем, мы расскажем в этом материале.

От эластипеда до «железного человека»

Наука и технологии - это без преувеличений самая лютая гонка изобретательности человека и природы. Всю свою историю человек пытается переделать мир вокруг себя под свои нужды. Где-то это ему удаётся, часто не без вреда для природы. Где-то приходится подглядывать у неё. И если у большинства беспозвоночных в том или ином виде есть внешний скелет, у человека его нет. Но ведь и крыльев не было?

В наше время под экзоскелетом подразумевается механический костюм или его часть до 2–2,5 метра высотой. Дальше идут «мобильные костюмы», меха и другие гигантские человекоподобные роботы.

Как и многое другое в нашей жизни, экзоскелеты постепенно перешагивают границу, разделяющую смелые мечты и повседневную жизнь. Будучи изначально просто идеями, концептами, мифами и легендами научной фантастики, сегодня чуть ли не каждую неделю появляются новые варианты экзоскелетов.

Первым изобретателем экзоскелета считается русский «инженеръ-механикъ» Николай Фердинандович Ягн, который ещё в 1890-х годах зарегистрировал ряд патентов на эту тему. Он жил в Америке, где, собственно, и патентовал свои чудеса, показывал их на выставках, а по возвращении на родную землю снова изобретал. Его экзоскелет должен был облегчить ходьбу, бег и прыжки в первую очередь, солдат. Уже тогда русский гений предвидел потенциальную военную мощь подобных устройств.

НИКОЛАЙ
Фердинандович ЯГН

Кроме экзоскелета Ягн разработал охлаждающие занавески, гидромотор, качающийся винт, самовар-стерилизатор и другие устройства


Hardiman

Не будем отрицать, гигантский и необъятный вклад в развитие экзоскелетов внесли фантасты. В 1959 году после нашумевшего романа Роберта Хайнлайна «Звёздный десант» всем стало понятно, что за внешними каркасными костюмами - будущее военных действий и не только. И понеслось.

Первый экзоскелет был создан компанией General Electric при поддержке Министерства обороны США в 1960-х годах. Hardiman весил 680 килограммов и мог поднимать грузы весом до 110 килограммов. При всех гигантских амбициях - а его хотели использовать и под водой, и в космосе, и боеголовки таскать, и ядерные стержни - показал он себя не лучшим образом. О нём благополучно забыли.

отдалённо напоминающее экзоскелеты устройство «педомотор» изобретателя Лесли С. Келли, разработанное в 1917 году

Девять лет спустя Миомир Вукобратович из югославского Белграда показал первый силовой шагающий экзоскелет, задача которого была давать людям с параличом нижних конечностей возможность шагать. В основе устройства лежал пневмопривод. Советские учёные из Центрального института травматологии и ортопедии имени Н. Н. Приорова проявили первые инициативы по разработке экзоскелетов совместно с югославскими коллегами на основе работ именно Вукобратовича. Но с началом перестройки проекты были закрыты, а о секретных подпольных разработках экзоскелетов данных нет. Зато с освоением космоса всё было хорошо.

В разное время в разных странах умельцы пытались сделать экзоскелеты самого разного назначения, но в силу самых разных препятствий (о которых мы ещё поговорим) удавалось это в край плохо. Нехватка энергоносителей, медленный рост научно-технического прогресса, развития материаловедения и прочих смежных наук, а также развитие компьютерных вычислений и кибернетики, волна которых поднялась только лет 30 назад, - всё это тормозило развитие экзоскелетов. Без всяких сомнений, это сложнейшие технологии, которые людям ещё предстоит освоить.


Проблемы экзоскелетов

На этой планете не так много материалов, из которых можно сделать жёсткий каркас и которые не усугубят дело своим весом. Во всяком случае, их было не много, но с учётом космических полётов, военных наработок, развития материаловедения, нанотехнологий и ещё десятка-другого интересных сфер человечество постепенно берёт один барьер за другим. В начале XXI века интерес к экзоскелетам разгорелся с недюжинной силой и продолжает гореть до сих пор. Но сначала поговорим об основных проблемах, с которыми сталкиваются создатели экзоскелетов.

Если разложить гипотетический экзоскелет на составляющие, у нас будут: источник питания, механический скелет и программное обеспечение. И если с двумя последними пунктами вроде бы всё ясно и проблем почти не осталось, то источник питания - это серьёзная проблема. Имея нормальный источник питания, инженеры могли бы не просто создать экзоскелет, а ещё и объединить его со скафандром и реактивным ранцем. Получился бы костюм Железного человека, наверное, но новый Тони Старк пока не явился.

Любой из компактных источников питания на сегодняшний день может обеспечить экзоскелету лишь несколько часов автономной работы. Дальше - зависимость от провода. У неперезаряжаемых и аккумуляторных батарей есть свои ограничения вроде необходимости замены или медленной зарядки, соответственно. Двигатели внутреннего сгорания должен быть слишком надёжным, но не особо компактным. К тому же, в последнем случае понадобится дополнительная система охлаждения, а сам двигатель внутреннего сгорания сложно настроить на моментальный выброс большого количества энергии. Электрохимические топливные элементы могут быстро заправляться жидким топливом (например, метанолом) и давать нужный и моментальный выброс энергии, но работают при крайне высоких температурах. 600 градусов по Цельсию - относительно низкая температура для такого источника питания. С ним «железный человек» превратится в хот-дог.

Как ни странно, наиболее возможным вариантом решения топливного вопроса для экзоскелетов будущего может стать самый невозможный: беспроводная передача энергии. Она могла бы решить массу вопросов, ведь её можно передавать из сколь угодно большого реактора (и ядерного в том числе). Но как? Вопрос открыт.


Первые экзоскелеты делались из алюминия и стали, недорогих и простых в использовании. Но сталь слишком тяжёлая, а экзоскелет обязательно должен работать и над тем, чтобы поднять свой собственный вес. Соответственно, при большом весе костюма его эффективность упадёт. Алюминиевые сплавы достаточно лёгкие, но накапливают усталость, а значит, не особо подходят для высоких нагрузок. Инженеры находятся в поисках лёгких и прочных материалов вроде титана или углеродного волокна. Они неизбежно будут дорогими, но обеспечат эффективность экзоскелета.

Особую проблему представляют приводы. Стандартные гидравлические цилиндры достаточно мощные и могут работать с высокой точностью, но тяжёлые и требуют наличия кучи шлангов и трубок. Пневматика, напротив, слишком непредсказуема в плане обработки движений, поскольку сжатый газ пружинит, а реактивные силы будут толкать приводы.

Впрочем, разрабатываются новые сервоприводы на электронной основе, которые будут использовать магниты и обеспечивать отзывчивые движения, потребляя минимум энергии и будучи небольшими. Можете сравнить это с переходом от паровозов к поездам. Отметим ещё гибкость, которая должна быть у суставов, но здесь проблемы экзоскелетов могут решить разработчики скафандров. Они же помогут разобраться с адаптацией костюма к размерам носителя.

Управление

Особую проблему при создании экзоскелета представляет управление и регулировка чрезмерных и нежелательных движений. Нельзя просто так взять и сделать экзоскелет с одной скоростью реакции каждого из членов. Такой механизм может быть слишком быстрым для пользователя, а слишком медленным его не сделаешь - неэффективно. С другой стороны, нельзя положиться на пользователя и доверить датчикам считывать намерения по движениям тела: рассинхронизация движений пользователя и костюма приведёт к увечьям. Нужно ограничивать обе действующих стороны. Над решением этого вопроса и ломают головы инженеры. Кроме того, нужно заранее обнаружить непреднамеренное или нежелательное движение, чтобы случайный чих или кашель не привёл к вызову скорой.


Экзоскелеты и будущее

В 2010 году компании Sarcos и Raytheon совместно с Министерством обороны США показала боевой экзоскелет XOS 2. Первый прототип вышел за два года до этого, но не вызвал переполоха. А вот XOS 2 оказался настолько крутым, что журнал Time включил экзоскелеты в список пяти лучших военных инноваций года. С тех пор ведущие инженеры мира ломают головы над созданием экзоскелетов, которые смогут обеспечить преимущество на поле боя. И за пределами него тоже.

Что мы имеем на сегодняшний день?

Этот экзоскелет был представлен в 2011 году и был предназначен для людей с ограниченными возможностями. В январе 2013 года вышла обновленная версия - ReWalk Rehabilitation, а уже в июне 2014 года FDA одобрило использование экзоскелета на публике и дома, тем самым открыв ему дорогу в коммерческом плане. Система весит около 23,3 килограмма, работает на базе Windows и в трёх режимах: идти, сидеть и стоять. Стоимость: от 70 до 85 тысяч долларов.

Серия этих военных экзоскелетов находится в активной разработке (на очереди XOS 3). Весит около 80 килограммов и позволяет владельцу с лёгкостью поднимать 90 лишних килограммов. Последние модели костюма настолько подвижны, что позволяют играть с мячом. Как отмечают производители, один XOS может заменить трёх солдат. Возможно, третье поколение экзоскелета будет уже ближе к тому, что мы видим на экранах фантастических фильмов последних лет. Увы, пока он привязан к внешнему источнику питания.

Human Universal Load Carrier - творение известной компании Lockheed Martin совместно с Berkeley Bionics. Этот экзоскелет также предназначен для военных. Основа - гидравлика и литий-полимерные батареи. Правильно загрузив внешний каркас, с его помощью пользователь может переносить до 140 килограммов лишнего груза. Предполагается, что солдаты смогут использовать HULC а-ля «я и друг мой грузовик» в течение 72 часов. Разработка идёт полным ходом, поэтому неудивительно, что именно HULC могут первыми поступить на вооружение США.

ExoHiker, ExoClimber и eLEGS (Ekso)

Прототипы опять же Berkeley Bionics, предназначенные для выполнения различных задач. Первый должен помочь путешественникам переносить груз до 50 килограммов, был представлен в феврале 2005 года и весит около 10 килограммов. Учитывая небольшую солнечную панель, может работать очень и очень долго. ExoClimber - это десятикилограммовое дополнение к ExoHiker, позволяющее носителю прыгать и взбираться по ступенькам. В 2010 году наработки Berkeley Bionics вылились в eLEGS. Эта система - полноценный гидравлический экзоскелет, который позволяет парализованным людям ходить и стоять. В 2011 году eLEGS был переименован в Ekso. Он весит 20 килограммов, передвигается с максимальной скоростью в 3,2 км/ч и работает в течение 6 часов.

Очередной нашумевший экзоскелет японского производителя роботов Cyberdyne. Его назначение - обеспечить возможность ходить людям с ограниченными возможностями. Есть два основных варианта: HAL-3 и HAL-5. С момента презентации в 2011 году меньше чем за год HAL приняли «на вооружение» более 130 медицинских институтов по всей стране. Однако испытания будут продолжаться весь 2014 и, возможно, 2015 год. В августе 2013 года HAL получил карт-бланш на использование в качестве медицинского робота в Европе. Новейшая модель костюма весит около 10 килограммов.

Cредняя стоимость медицинского экзоскелета -
90 тысяч долларов.

Помимо серьёзных экзоскелетов на всё тело, всё большей популярностью пользуются ограниченные экзоскелеты, предназначенные для выполнения специфических задач. Например, в августе этого года был показан экзостул Chairless Chair, позволяющий сидеть стоя. Компании Daewoo и Lockheed Martin независимо друг от друга показали экзоскелеты для работников судостроительных верфей. Эти устройства позволяют рабочим удерживать груз или инструмент весом до 30 килограммов, особо не напрягаясь.

В России разработкой экзоскелета под названием «ЭкзоАтлет» занимается команда учёных, собранная на базе НИИ Механики МГУ. Они продолжают начатые ещё в СССР разработки Вукобратовича, о которых мы упоминали выше. Первый рабочий пассивный экзоскелет этой команды был разработан для сотрудников МЧС, пожарных и спасателей. При весе в 12 килограммов конструкция позволяет без особых усилий переносить до 100 килограммов груза. В планах компании - разработка силовой модели ExoAtler-A, которая позволит переносить до 200 килограммов, а также медицинского экзоскелета для реабилитации людей с ограниченными возможностями.

Объединяет все эти костюмы то, что представлены они по большей части в качестве прототипов. Значит, будут совершенствоваться. Значит, их ждут полевые испытания. Значит, будут новые модели. Значит, за ними будущее. Пока говорить о том, что рабочий и полезный экзоскелет можно пойти и купить на чёрном рынке, рановато. Но начало положено, а развитие этого направления уверенно входит в широкое русло. До костюма Тони Старка нам ещё далековато, но что мешает радоваться зрелищным фильмам? Любителям зрелищных разборок с участием экзоскелетов всегда будет что посмотреть: «Чужие» (1986), «Железный человек» (2008), «Аватар» (2009), «Район № 9» (2009), «Мстители» (2012), «Элизиум» (2013), «Грань будущего» (2014).

Одно известно наверняка: экзоскелеты в будущем будут повсюду. Они помогут нашим космонавтам освоить Марс, построить первые колонии и с удобством управляться в космосе. Они станут на вооружение в военном сегменте, поскольку по умолчанию наделяют солдат сверхчеловеческой силой. Они дадут возможность полноценно передвигаться тем, кто её потерял. Костюм Железного человека однажды станет реальным, как и всё, что вы видите вокруг.

«ЭкзоАтлет»


Не так давно дети с редкой неврологической болезнью впервые получили возможность ходить, благодаря новому роботизированному экзоскелету. Эти устройства — которые по сути являются роботизированными костюмами, придающими искусственное движение конечностям пользователя, — становятся все более распространенным способом помощи людям, не имеющим возможности использовать ноги для ходьбы. Но в то время как современные экзоскелеты в основном неуклюжие, тяжелые устройства, новые технологии могут сделать их куда более простыми в использовании и более естественными. Вы уже, наверное, догадались, к чему все идет: к искусственной коже.

Экзоскелеты разрабатываются с 1960-х годов. Первый экзоскелет был громоздким набором ног и когтистых перчаток, лишь отдаленно напоминающий костюм «Железного человека». Он должен был использовать силу гидравлики в помощь промышленным работникам, чтобы те поднимали сотни килограммов веса. Тот проект был неудачным и не работал, но последующие варианты становились все лучше и лучше. Сегодня люди, наконец, могут использовать экзоскелеты для частичного усиления собственных возможностей, заново учиться ходить с их помощью или даже взаимодействовать с компьютерами, используя прикосновения или «тактильную» отдачу.

Обычно эти устройства состоят из цепи звеньев и силовых суставов, которые работают в паре с собственными костями и суставами человека. Искусственные конечности надежно крепятся к конечностям человека и продолжают его движения. Управление экзоскелетом может осуществляться с помощью компьютера — например, если он выполняет подпрограмму физиотерапии — или за счет мониторинга электрической активности в мышцах пользователя и поддержки силы, которую они создают.

Тяжелый и болезненный
Несмотря на полвека исследований, экзоскелеты до сих пор не используются повсеместно. Во многом это потому, что их было неудобно носить в течение длительных периодов времени, ведь тела людей отличаются от костюмов, которые делаются как одно прокрустово ложе. Некоторые экзоскелеты лучше подходят к телу человека, но если роботизированные суставы и реальные суставы пользователя не будут поворачиваться синхронно, может возникнуть дискомфорт или боль. Все это усугубляется еще и жесткостью каждой части костюма.

Еще одна проблема, особенно у экзоскелетов для верхней части тела, заключается в их весе, поскольку их делают из прочных материалов, способных удерживать тяжелые веса и поддерживать тело. Современные костюмы также не очень хорошо справляются с изменениями температуры или дождем, что усложняет их использование в реальном мире. А с их внешним видом люди до сих пор не могут свыкнуться.

Чтобы сделать экзоскелеты более практичными и приятными на вид, нам понадобятся инновации: нам придется сделать их «второй кожей», а не гигантским роботизированным костюмом. Обычно экзоскелеты используют тяжелые электромоторы, но в качестве пневматических мускулов можно использовать и легковесные приводы. Они могут прикладывать подобные усилия, что и электромоторы, только весить будут в разы меньше. Такие мускулы состоят из резиновой камеры, окруженной тканым рукавом. Под давлением они увеличиваются в диаметре и сокращаются в длине, толкая сустав. И хоть сделаны они из легких материалов, они могут прикладывать силу, которой хватит для подъема многих сотен килограммов.

Мягкая робототехника
И все же даже эти легкие приводы должны крепиться к жесткой механической конструкции на теле пользователя. Ученые из Центра автономных систем и робототехники Университета Солфорда разрабатывают другую альтернативу: мягкую робототехнику. Эта технология использует физически мягкие продвинутые материалы для тех же задач, которые выполняют традиционные жесткие роботизированные устройства. Они особенно хорошо подходят для взаимодействия с людьми, поскольку мягкое зачастую означает легкое и при столкновении с человеком будет меньше шансов пораниться.

Недавно они разработали новый «мягкий континуумный привод», который изгибается подобно хоботу слона. В отличие от традиционного жесткого роботизированного сустава, встречая сопротивление в одной части тела, он будет изгибаться во всех направлениях по всей своей длине. Надев костюм из плотно прилегающего к телу материала с такими приводами, мы могли бы получить мягкий экзоскелет, который сгибается точно в местах нахождения суставов носителя. Следовательно, костюм вполне подойдет разным пользователям без необходимости механически подгонять или калибровать его. Плюс к этому система легкая, и ее можно носить как одежду вместо громоздкой механической рамы.

Экзоскелеты начинают продаваться на коммерческой основе, и мы, вероятно, увидим много новенького в грядущие годы. В 2012 году парализованная женщина Клэр Ломас даже завершила Лондонский марафон в экзоскелете. Но остается много инженерных проблем, которые придется решить, прежде чем мы увидим широкое применение таких систем. Как минимум нам нужен способ подпитывать эти костюмы без необходимости подключать к сети через каждые полчаса.

Правообладатель иллюстрации Thinkstock

Смогут ли парализованные люди когда-нибудь снова начать ходить? Корреспондент рассказывает о том, как его парализованный друг стал испытателем механической пары ног и теперь играет в футбол

Мы с Дэниелом Фукучи шагаем по подземному коридору вдоль бетонных стен, освещенных резким светом люминесцентных ламп. Он немного отстает, но справедливости ради стоит заметить, что он частично парализован ниже пояса.

Обычно, опираясь на костыли, Дэниел ковыляет несколько метров и останавливается передохнуть. Но сегодня он двигается довольно резво и быстро переставляет ноги, преодолевая длинный коридор. В чем причина столь внезапного преображения? Экзоскелет.

Необычное приспособление, пристегнутое к его талии и бедрам, приводится в движение двумя моторами по бокам и по очереди выталкивает ноги вперед. На каждом шаге, совершая плавное движение, машина издает характерный звук: "Вжик… Вжик…"

Уже год Дэниел еженедельно приходит в подвал Калифорнийского университета в Беркли, где разместилась лаборатория, и испытывает экзоскелет для пациентов с параличом нижних конечностей.

"Мне показалось, что это может мне помочь, - говорит он. - Так или иначе, играть в робота довольно весело".

Правообладатель иллюстрации SPL Image caption Изначально экзоскелеты создавались для нужд армии

Разумеется, это не просто игра, а экспериментальная часть исследования ученых из Лаборатории робототехники и эргономики, работающих под руководством эксперта в области робототехники Хомайуна Казеруни.

Первые его опыты по созданию экзоскелетов были направлены на то, чтобы солдаты на поле боя могли поднимать тяжелые предметы. Плодом этой работы стал экзоскелет HULC, лицензию на который приобрела оборонно-техническая компания Lockheed Martin. Но затем Казеруни сменил направление деятельности и вот уже несколько лет трудится над экзоскелетами, которые призваны помочь инвалидам.

В 2011 году в центре внимания общественности оказался разработанный его группой экзоскелет. С помощью этой разработки студент Калифорнийского университета Остин Уитни с параличом нижних конечностей смог самостоятельно передвигаться на церемонии вручения диплома.

"Наша цель в том, чтобы повысить самостоятельность людей с двигательными нарушениями, дав им возможность ходить", - поясняет Казеруни (студенты обращаются к нему просто "Каз").

Экзоскелет для него - не просто приспособление для прогулки, а ключ к независимому существованию.

"Чтобы добиться этой цели, я намерен использовать все знания и ресурсы, которые у меня есть, - говорит он. - Я не остановлюсь, пока не сделаю для людей с двигательными нарушениями все возможное. Это часть моего существования. Это то, за что я борюсь каждый день".

Пилоты-испытатели

В решении этой задачи Казеруни помогают такие люди, как Дэниел. С Дэниелом мы дружим с первого класса. Все детство мы колесили на велосипедах по своему пригородному району и играли в баскетбол на школьной площадке. Мы оба были весьма щуплого телосложения, поэтому, начав играть во втором классе, делали ставку на необычную технику броска. Я толкал мяч из положения между ног, а он бросал его, как копье.

Правообладатель иллюстрации Berkeley Robotics Image caption Дэниел Фукучи (справа) и еще один пилот-испытатель лаборатории в Беркли

Много лет спустя, в 1999 году, за несколько недель до отъезда в колледж, я услышал звонок в дверь. На пороге стояли Дэниел и еще один наш друг - они катались на роликовых коньках. Я взял велосипед и присоединился к ним. Как позже оказалось, это была наша с Дэниелом последняя прогулка такого рода.

В конце августа я уже начал учебу в колледже, а Дэниел отдыхал на Гавайях. Однажды утром он отправился на пляж Вайкики покататься на волнах, но через три четверти часа почувствовал в пояснице пульсирующую боль.

Подумав, что он просто не в форме, Дэниел не придал этому значения. А когда через полчаса все же решил вернуться на берег, заметил нарастающую слабость в ногах. Он попробовал отмокнуть в теплой ванне в отеле, но это не помогало, и через несколько часов, убедившись в том, что состояние ухудшается, Дэниел, следуя уговорам отца, беседовавшего с ним по телефону, обратился в больницу. "К тому моменту, - вспоминает он, - я был полностью парализован ниже пояса".

Вскоре ему поставили диагноз: поперечный миелит - редкое неврологическое заболевание, вызванное воспалением спинного мозга. Врачи предполагают, что в случае Дэниела его нервная система оказалась атакована его же собственным иммунитетом.

Согласно данным Национального института неврологических расстройств и инсульта, каждый год эта болезнь поражает 1400 человек, и 33 тыс. американцев страдают от той или иной формы связанной с ней инвалидности. Некоторые пациенты поддаются реабилитации, в то время как другие остаются инвалидами на всю жизнь.

Чувствительность и подвижность ног Дэниела постепенно восстанавливались, но где-то через семь лет положительная динамика пропала, и сегодня он все так же передвигается только на костылях или в инвалидном кресле. Однако чуть больше года назад Дэниел узнал, что лаборатория Казеруни набирает "пилотов-испытателей" для своего нового экзоскелета, и сразу же решил воспользоваться этой возможностью. "Кто откажется от работы, где тебя называют пилотом-испытателем?" - хмыкает он.

Подземная лаборатория спрятана за тяжелой дверью в конце туннеля. На двери наклеен маленький черно-белый портрет Казеруни. Печатными буквами написано: KazLab. Подпись внизу гласит: "Двигаем науку на предельной скорости!"

С первого взгляда лаборатория похожа на гараж любителя мастерить всякую всячину. На рабочих и письменных столах, на книжных полках лежат книги, газеты, скотч, шурупы, болты, гайки и много всего прочего. Высоко на стене можно заметить знак: "KAZLAB. Наши костюмы носят в БУДУЩЕМ".

С потолка свисает один из таких костюмов - похожий на тот, что испытывает Дэниел, но с поддержкой ног по всей длине и с моторами на коленях. За углом скрывается еще одна комната, где висит штук пять похожих приспособлений - это прототипы HULC и еще более ранние модели экзоскелетов.

Правообладатель иллюстрации Getty Image caption Мужчина, парализованный после несчастного случая на стройке, в экзоскелете производства Ekso Bionics

Первые экзоскелеты Казеруни представляли собой крупные, тяжеловесные машины, которые полностью поддерживали спину и ноги надевшего их человека. Каждый шаг, каждое движение было моторизовано.

Большинство экзоскелетов из тех, которые сегодня предлагаются на рынке, сделаны именно по такой модели: например, экзоскелет от Ekso Bionics (ранее Berkeley Bionics) - компании, которую Казеруни основал в 2005 году. Экзоскелеты Ekso Bionics разработаны для использования под присмотром врача в больницах и других медицинских учреждениях, где занимаются реабилитацией пациентов с параплегией и инсультом.

Покинув компанию, Казеруни изменил стратегию: теперь он стремится создавать более простые приспособления, которые можно будет использовать дома, без посторонней помощи. Обычные экзоскелеты стоят сотни тысяч долларов, но он намерен снизить цену до десяти-двадцати тысяч: по-прежнему недешево, но теперь устройство хотя бы теоретически кто-то сможет купить.

Ради этой цели группа исследователей отказалась от стремления к универсальности и разрабатывает минималистичные экзоскелеты, ориентированные на потребности конкретного человека.

Не каждый человек с двигательным расстройством полностью парализован, и не все находятся в одинаковой физической форме. "Получается, у нас есть целый континуум от Усейна Болта до Кристофера Рива, который, как известно, в конце жизни не мог пошевелить ни одной конечностью", - рассуждает аспирант Майкл Маккинли, работающий в лаборатории.

Быстрее, лучше

Поскольку Дэниел может сгибать колени, ему не нужен полноразмерный костюм, поддерживающий ногу по всей длине. Благодаря этому конструкция стала на 4,5 кг легче и даже не похожа на экзоскелет - скорее, это просто моторизованное бедро.

Компоненты добавляются и убираются в зависимости от степени подвижности пользователя. Благодаря модульному подходу массовое производство становится проще и дешевле, поясняет Маккинли.

"Сочетая разные компоненты, можно собрать машину, которая будет полностью соответствовать потребностям человека". Со временем, обещает он, заказать индивидуальный экзоскелет будет так же просто, как получить рецепт на очки.

Дэниел продолжает шагать по коридору за дверью лаборатории, и кажется, что день, о котором говорит Маккинли, наступит совсем скоро. Чтобы сделать шаг, Дэниел нажимает кнопку на ручном пульте.

С нами также аспирант Брэд Перри: он ведет хронометраж прогулки и следит за исправностью машины. Дэниел сообщает ему обо всех неполадках. Сегодня, например, кнопка срабатывает медленнее, чем нужно, и походка получается неровной. Коробочка с электроникой, прилепленная к спине, тоже отклеивается, и Перри постоянно приматывает ее скотчем.

Конечно, многое еще предстоит сделать, но даже в нынешней форме экзоскелет позволяет Дэниелу ходить дольше и быстрее, чем на костылях. "Без него я замечаю, насколько медленнее передвигаюсь - насколько короче стали мои шаги", - говорит он.

Правообладатель иллюстрации Berkeley Robotics Image caption Экзоскелет соответствует потребностям своего хозяина. Например, модель можно облегчить, если человек может самостоятельно сгибать колени

Правда, экзоскелет подходит только для ходьбы по мощеной поверхности - даже простая земля ему не по зубам. Но для людей с двигательными расстройствами и это было бы прорывом, отмечает Казеруни.

Он представляет, что в будущем экзоскелет позволит человеку, сегодня прикованному к инвалидной коляске, самостоятельно добраться до автобусной остановки, доехать до работы, а в офисе - войти в переговорную, подойти к кулеру или дойти до туалета. Это простые, но важные движения, которые могут радикально изменить качество жизни человека.

"Не знаю, заменит ли это устройство инвалидное кресло, - говорит Маккинли. - Но, может быть, и не в этом наша цель". А цель - дать людям инструмент, с помощью которого они обретут самостоятельность. Инвалидная коляска как инструмент весьма эффективна, отмечает ученый. Но сидение в ней в течение длительного времени чревато проблемами со спиной, может приводить к образованию пролежней и в целом плохо сказывается на здоровье. Экзоскелет не только позволит хозяину достать книгу с верхней полки, но и улучшит его здоровье - просто за счет того, что поставит его на ноги.

Дэниел говорит, что экзоскелет ему в основном нужен для реабилитации, чтобы поддерживать мышечный тонус и чувство равновесия. Кроме того, он мог бы ходить с его помощью в тех случаях, когда коляска слишком громоздка, а идти на костылях было бы слишком медленно.

"Одна из вещей, которые мне нравятся в экзоскелетах, - это неинвазивный подход", - отмечает Дэниел. Он кандидат на проведение различных видов операций и применение новых типов лекарств, которые могут помочь ему восстановить подвижность, но экзоскелет позволяет ему добиться этого результата с гораздо меньшими рисками.

Будущее уже наступило

Помимо того, что передвигаться самому - комфортно, экзоскелет позволяет владельцу гораздо более непосредственно общаться с другими людьми. "В инвалидном кресле ты словно в пузыре", - сетует Дэниел. Люди боятся лопнуть этот пузырь и потому реже подходят и общаются с тобой, чем когда ты здоров.

Очень многие моменты в жизни нужно проживать стоя, замечает Дэниел.

"И в этом часть прелести экзоскелетов - они делают тебя нормальным членом общества". Чтобы на тебя взглянули иначе, иногда достаточно, чтобы твои глаза были на уровне глаз других людей. "Качество жизни серьезно меняется за счет общения", - говорит Дэниел.

Например, людям не приходится наклоняться, чтобы пожать тебе руку. "Когда ты встаешь и жмешь руку стоя, в этот жест вкладывается совсем другой смысл, - добавляет он. - Ощущения совсем другие".

Я продолжаю наблюдать, как Дэниел ходит с помощью экзоскелета , и самое поразительное, что это вовсе не кажется мне чем-то необыкновенным. Ученые стремились к простоте конструкции, но, даже зная это, замечаешь, что устройство выглядит на удивление обыденно - оно совсем не похоже на прибор из фантастического фильма.

Возможно, это лучшее подтверждение того, что будущее экзоскелетов уже настало. Нас поражают технологии, которые кажутся нам немыслимыми, и причудливые приспособления, которые позволяют нам делать что-то, о чем мы раньше могли только мечтать. Но электромеханическая машина, которая помогает ходить… Ну да, почему бы и нет?

Правообладатель иллюстрации Thinkstock Image caption Экзоскелет может повысить качество жизни тех людей, которые вынуждены пользоваться инвалидной коляской

Судя по всему, эпоха экзоскелетов не заставит себя долго ждать: по словам Казеруни, новые модели появятся всего через год. Скорее всего, поначалу они будут далеки от совершенства, но технологии постоянно развиваются.

Устройству еще предстоит пройти контроль Управления по контролю качества пищевых продуктов и лекарственных средств США - что будет непросто, если учесть, что оно предназначается для использования на территории Соединенных Штатов без надзора специалиста.

вопрос, который ставит под сомнение доступность новых устройств, - захотят ли за них платить страховые компании. Но для Казеруни это не имеет большого значения. "Проблемы созданы для того, чтобы их решать, - говорит он. - Мне нечего бояться".

Возможно, сдержанное и даже несколько легкомысленное отношение Дэниела к экзоскелету - это его личная особенность. Ведь и перед лицом внезапного события, перевернувшего всю его жизнь, он не потерял внутреннего равновесия. В день, когда его парализовало, он тоже был спокоен, и даже медсестра в приемном покое не поняла, что он не может ходить, попросив его переместиться на носилки.

"Играть остается теми картами, которые у тебя на руках, - говорит Дэниел. - Не стоит слишком задумываться о картах, которые тебе не достались".

Впрочем, кое-что в его нынешнем состоянии все-таки вызывает у него досаду. По его словам, перед тем как его парализовало, он, наконец, научился делать точный бросок, благодаря чему обыграл меня в баскетбол тем летом. Он больше не играет, но не оставляет надежд - ведь экзоскелеты день ото дня становятся все совершеннее. "Как знать, - говорит он, - может быть, однажды я подпрыгну на этой штуке и заброшу мяч в корзину".

Авторы разработки – инженеры «ЦНИИТОЧМАШ». Она стала логическим продолжением уже созданной и принятой на вооружение боевой экипировки . По оценке многих зарубежных и российских экспертов, новинка чем-то напоминает снаряжение персонажей легендарного сериала «Звездные войны».

Экипировка – уникальный комплекс, объединяющий в себе средства защиты, вооружение и титановый экзоскелет. Все это управляется интеллектуальной компьютерной системой.

Голову универсального российского солдата защитит стальной шлем с бронированным стеклом, одновременно выполняющий функции противогаза и оснащенный прибором ночного видения.

Информация о противнике будет отображаться на встроенном дисплее в очках. Сюда же выведутся сведения о здоровье солдата. В критической ситуации костюм окажет первую помощь.

В отличие от современных бронежилетов в экипировке будущего бронежилет будет иметь чешуйчатую структуру, не ограничивающую движения. Помимо этого, «умная» броня сможет приспособиться к изменениям температуры, замаскироваться, ей не страшны ни вода, ни огонь и, благодаря системе опознавания, она сможет отличить своих от чужих.

Титановый экзоскелет является своеобразным усилителем солдата при передвижении. С его помощью он получает дополнительные возможности при переноске тяжелого вооружения на значительные расстояния, а сам он становится намного более выносливым и быстрым.

Ноги солдата будущего надежно защищены специальными пожароустойчивыми сапогами, куда вмонтированы противоминные детекторы, аппаратура подавления радиосигналов мин и источники питания экзоскелета.