Великие немецкие изобретатели. Отто фон Герике: биография Вакуумный насос отто фон герике

Немецкий ученый, изобретатель и политик. Более всего известен работой над физикой вакуума, созданием экспериментальной техники для демонстрации электростатического отталкивания и выступлениями в поддержку теорий "дистанционного взаимодействия" и "абсолютного пространства".

Легендарные "магдебургские полушария" в свое время произвели в Германии немалый фурор. Физик Отто фон Герике соединил две полусферы, выкачал из них воздух и продемонстрировал, что воздух на эту конструкцию давит с такой силой, что разорвать сферу не могут даже 16 лошадей. Опыты с вакуумом, впрочем, были отнюдь не единственным увлечением фон Герике – немало полезного физик сделал и для будущих поколений специалистов по электростатике, и в качестве общественного деятеля для жителей Магдебурга.

Родился фон Герике в Магдебурге, Германия (Magdeburg, Germany). В 1617-м он стал студентом Лейпцигского Университета (Leipzig University). Тридцатилетняя война помешала Отто продолжить учебу в Лейпциге и вынудила искать удачи в других учебных заведениях страны. Завершил учебу свою фон Герике 9-месячной поездкой во Францию (France) и Англию (England). Вернувшись в Магдебург в 1626-м, фон Герике женился.

Отто фон Герике не разделял энтузиазм горожан по поводу Густава II Адольфа (Gustavus Adolphus), что, впрочем, не особо помогло ему при последовавшем падении Магдебурга в мае 1631-го. Фон Герике повезло остаться в живых, хотя свободы и большей части состояния он все же лишился. Некоторое время он работал инженером; вернуться в Магдебург семье его удалось лишь в феврале 1632-го. Следующие 10 лет фон Герике активно участвовал в восстановлении изрядно порушенного города; немало времени Отто уделял общественной деятельности – ему даже довелось некоторое время пробыть бургомистром. Нередко фон Герике принимал участие в дипломатических миссиях.

В 1654-м Отто фон Герике довелось продемонстрировать свои эксперименты с вакуумом высшим чинам Священной Римской империи. Через некоторое время труды фон Герике привлекли внимание Роберта Бойля (Robert Boyle); тот в свое время вел аналогичные исследования и работами немца был в высшей степени заинтересован.

Фон Герике продолжал вести довольно активную научную деятельность; более всего концентрировался он над своим "трудом жизни" – книгой "Ottonis de Guericke Experimenta Nova (ut vocantur) Magdeburgica de Vacuo Spatio". Отто тщательно документировал эксперименты с вакуумом и электростатикой; попутно ему удалось первому в мире явственно продемонстрировать электростатическое отталкивание. Сам фон Герике утверждал, что окончательно работа над книгой закончились 14 мая 1663-го; публикация, однако, была отложена на целых 9 лет.

В 60-х годах 17-го века стало ясно, что все попытки Магдебурга вообще и фон Герике в частности выбить городу статус свободного провалились; горожане подписали соглашение, по которому принимали в своих стенах гарнизон бранденбургских солдат и соглашались платить дань курфюрсту Фридриху Вильгельму I (Great Elector, Friedrich Wilhelm I of Brandenburg). Фон Герике, впрочем, это во многих отношениях пошло на пользу – курфюрст был активным покровителем наук. Вышедшая в печать "Experimenta Nova" даже содержала посвящение Фридриху Вильгельму; к тому времени курфюрсту ученый был обязан многим. В 1666-м Отто фон Герике удостоился еще и дворянского титула от императора Леопольда I (Leopold I). Именно тогда Отто сменил фамилию с "Герике" ("Gericke") на "Гуэрике" ("Guericke") и добавил в имя приставку "фон".

В 1667-м фон Герике внял довольно долго поступавшим запросам и освободил занимаемые ранее должности гражданского толка. В 1681-м Отто фон Герике и его вторая жена Доротея покинули Магдебург, спасаясь от начавшейся чумы; осели супруги у сына фон Герике, Ганса Отто (Hans Otto), в Гамбурге (Hamburg). В Гамбурге Отто фон Герике и скончался; случилось это 11 мая 1686-го года. Тело фон Герике было захоронено в Магдебурге.

Некоторое время служил инженером в Швеции. С 1646 г. - бургомистр Магдебурга . В изобрёл вакуумную откачку и применил своё изобретение для изучения свойств вакуума и роли воздуха в процессе горения и для дыхания человека. В 1654 году провёл известный эксперимент с Магдебургскими полушариями , который доказал наличие давления воздуха; установил упругость и весомость воздуха , способность поддерживать горение , проводить звук .

В 1657 году изобрел водяной барометр, с помощью которого в 1660 году предсказал надвигающуюся бурю за 2 часа до её появления , таким образом, войдя в историю как один из первых метеорологов .

Хоть сам Герике не разделял симпатий жителей Магдебурга к шведскому королю-протестанту Густаву II Адольфу , когда в мае войска Католической лиги под предводительством Иоганна Церкласа Тилли взяли штурмом и уничтожили город, он потерял своё имущество и, чуть не погибнув, оказался в плену под Фермерслебеном . Оттуда, благодаря посредничеству князя Людвига Ангальт-Кётенского его выкупили за триста талеров . Переехав с семьей в Эрфурт , Герике стал фортификационным инженером на службе у Густава II Адольфа (находился на должности до 1636-го).

В феврале 1632-го вся семья Герике вернулась в Магдебург. Следующие десять лет фон Герике осуществлял восстановление города, уничтоженного пожаром в 1631 году. Отстроил также и своё жильё. При шведской, а с 1636-го - саксонской власти он принимал участие в общественных делах Магдебурга. В 1641 году стал городским казначеем, а в 1646-м - бургомистром. Эту должность он занимал тридцать лет. В сентябре 1642-го Герике начал довольно опасную и скользкую дипломатическую деятельность (продолжалась до 1663-го), поехав ко двору саксонского курфюрста в Дрездене , чтобы там добиваться смягчения жесткого саксонского военного режима в Магдебурге. Принимал участие, в частности, в заключении Вестфальского мира , в работе de Конгрессе по исполнению мира в Нюрнберге (1649-1650) и в роспуске de Регенсбургского райхстага (1653-1654). На этом роспуске совпали научные и дипломатические интересы Герике. По приглашению он показал несколько своих экспериментов перед высшими сановниками Священной Римской империи , один из которых, архиепископ de Иоганн Филипп фон Шонборн , купил один из аппаратов Герике и направил в иезуитский коллегиум в Вюрцбурге . Профессор философии и математики этого заведения Каспар Шотт заинтересовался новинкой и с 1656 года стал регулярно переписываться с Отто фон Герике. В результате тот впервые опубликовал свою научную работу в приложении к книге Шотта , вышедшей в 1657 году . В 1664-м Шотт выпустил в Вюрцбурге книгу Techica curiosa , которая содержала информацию об опытах Герике. За год до того сам Герике приготовил к печати рукопись своего фундаментального труда - Experimenta Nova (ut vocantur) Magdeburgica de Vacuo Spatio , но в печать она вышла в 1672 года в Амстердаме .

В 1652-м (через семь лет после смерти первой жены) он женился на Доротее Лентке, дочери своего коллеги на службе - Штеффана Лентке, и родил с ней троих детей: дочь Анну Катарину и сыновей - Ганса Отто и Якоба Кристофа. 4 января 1666 года кайзер Леопольд I пожаловал учёному дворянский титул.

Воздушный насос

Герике сначала не считал возможным выкачивать воздух непосредственно и хотел образовать пустое пространство в герметически закрытой бочке посредством удаления наполнявшей её воды. С этой целью он ко дну бочки приделал насос, думая, что только при таком расположении прибора вода будет следовать за поршнем насоса вследствие своей тяжести. Отсюда видим, что вначале у Герике не было ещё определенного понятия об атмосферном давлении и вообще об упругости воздуха. Когда эта первая попытка не удалась, так как в образующуюся пустоту сквозь щели и поры бочки проникал с шипением наружный воздух, Герике попробовал поместить свою бочку в другую, тоже наполненную водой, предполагая этим способом предохранить пустоту от устремляющегося в неё воздуха снаружи. Но и на этот раз опыт оказался неудачным, так как вода из наружной бочки под влиянием атмосферного давления протекала сквозь поры во внутреннюю и наполняла пустоту. Тогда, наконец, Герике решился приложить насос к непосредственному выкачиванию воздуха из медного шарообразного сосуда, все ещё придерживаясь своего ложного предположения, что и воздух, подобно воде, может следовать за поршнем насоса только благодаря своей тяжести, поэтому и теперь насос был привинчен внизу сосуда и расположен вертикально. Результат выкачивания был совсем неожиданным и напугал всех присутствующих: медный шар не выдержал внешнего давления и с треском был скомкан и сплюснут. Это заставило Герике приготовлять для следующих опытов резервуары более прочные и более правильной формы. Неудобное расположение насоса вскоре принудило Герике устроить специальный для всего прибора треножник и приделать к поршню рычаг; таким образом был устроен первый воздушный насос, названный автором Antlia pneumatica . Конечно, прибор был ещё очень далек от совершенства и требовал не менее трех человек для манипуляций с поршнем и кранами, погруженными в воду, для лучшей изоляции образующейся пустоты от наружного воздуха.

Изучение действия теплоты на воздух

Герике занимался также изучением действия теплоты на воздух, и хотя в устройство своего воздушного термометра он не внес никаких существенных усовершенствований сравнительно с известными тогда приборами (носившими в его время в Италии название caloris mensor ), тем не менее мы можем смело сказать, что он был первым по времени метеорологом. Не касаясь спорного и в сущности маловажного вопроса об изобретении термометра , которое чаще всего приписывается Галилею , но также и Дреббелю и врачу Санкториусу , отметим только, что первоначальная форма его была крайне несовершенна: во-первых, от того, что на показания прибора влияла не только температура, но и атмосферное давление, а во-вторых, вследствие отсутствия определенной единицы (градуса) для сравнения тепловых эффектов.

Термометр (воздушный) того времени состоял из резервуара с трубкой, погруженной открытым концом в сосуд с водою; уровень приподнятой в трубке воды изменялся, очевидно, в зависимости от температуры воздуха в резервуаре и от внешнего атмосферного давления. Странно, что и Герике, которому это последнее влияние должно было быть хорошо известным, не обращал на него внимания, по крайней мере в его термометре это влияние не устранено. Сам прибор, предназначенный исключительно для наблюдений изменения температуры наружного воздуха и потому подобно барометру помещенный на наружной стене дома, состоял из Сифонной (металлической) трубки, наполненной приблизительно до половины спиртом; один конец трубки сообщался с большим шаром, содержащим воздух, другой был открыт и заключал поплавок, от которого шла нить через блок; на конце нити свободно качалась в воздухе деревянная фигурка, указывающая рукою на шкалу с 7-ю делениями. Все подробности прибора, кроме шара, на котором красовалась надпись Perpetuum mobile , фигурки и шкалы, были тоже закрыты досками. Крайние точки на шкале были отмечены словами: magnus frigus и magnus calor . Средняя черта имела особое значение, так сказать, климатическое: она должна была соответствовать той температуре воздуха, при которой в Магдебурге появляются первые осенние ночные морозы.

Отсюда можем заключить, что хотя первые попытки отметить 0° на шкале термометра принадлежал знаменитой в истории опытной физики Флорентийской академии (Del Cimento ) , но и Герике понимал, как важно и необходимо иметь на термометрической шкале хотя бы одну постоянную точку, и, как мы видим, пытался сделать в этом направлении новый шаг вперед, избрав для регулирования своего термометра произвольную черту, соответствующую первым осенним морозам.

Изучение электричества

Переходим теперь к другой области физики, в которой имя Герике пользуется тоже вполне заслуженной известностью. Мы говорим об электричестве, которое в то время, призванное, так сказать, к жизни опытными исследованиями Гильберта , представляло в виде нескольких отрывочных фактов лишь ничтожный и никого не интересующий зародыш той грандиозной силы, которой суждено было завоевать внимание всего цивилизованного мира и опутать земной шар сетью своих проводников.

Отто фон Герике называют иногда только остроумным изобретателем физических приборов, стремящимся прославиться среди современников своими грандиозными опытами и мало заботящимся о прогрессе науки. Но Фердинанд Розенбергер (1845-1899) в своей «Истории физики» совершенно справедливо замечает, что такой упрек лишен всякого основания, ибо Герике вовсе не имел исключительной цели удивлять публику. Он всегда руководился чисто научными интересами и выводил из своих опытов не фантастические идеи, а настоящие научные заключения. Лучшим доказательством этому служат его экспериментальные исследования явлений статического электричества , которыми в это время - повторяем - ещё мало кто интересовался .

Желая повторить и проверить опыты Гильберта , Герике изобрел прибор для получения электрического состояния, который если и не может быть назван электрической машиной в настоящем значении этого слова, потому что в нём недоставало конденсатора для собирания электричества, развиваемого трением , то все же послужил прототипом для всех поздних устраиваемых электрических открытий. Сюда прежде всего следует отнести открытие электрического отталкивания, которое было неизвестно Гильберту.

Для развития электрического состояния Герике приготовил довольно большой шар из серы, который при посредстве продетой насквозь оси приводился во вращение и натирался попросту сухой рукой. Наэлектризовав этот шар, Герике заметил, что притягиваемые шаром тела после прикосновения отталкиваются; затем он подметил ещё, что свободно носящаяся в воздухе пушинка, притянутая и вслед затем оттолкнутая от шара, притягивается другими телами. Герике доказал также, что электрическое состояние передается по нитке (льняной); но при этом, не зная ещё ничего об изоляторах, длину нитки он брал только в один локоть и мог придавать ей лишь вертикальное расположение. Он первый наблюдал на своем серном шаре электрическое свечение в темноте, но искры не получил ; он слышал также «в серном шаре» слабый треск, когда подносил его близко к уху, но не знал, чему это приписать.

Изучение магнетизма

В области магнетизма Герике сделано тоже несколько новых наблюдений. Он нашел, что железные вертикальные прутья в оконных решетках намагничиваются сами собою, представляя вверху северные, а внизу южные полюсы, и показал, что можно слегка намагнитить железную полосу, расположив её в направлении меридиана и ударяя по ней молотком.

Изыскания в области астрономии

Также занимался астрономией. Был сторонником гелиоцентрической системы . Разработал свою космологическую систему, отличавшуюся от системы Коперника предположением о наличии бесконечного пространства, в котором распределены неподвижные звёзды. Полагал, что космическое пространство является пустым, но между небесным телами действуют дальнодействующие силы, регулирующие их движение.


В филателии

    DR 1936 608 Otto von Guericke.jpg

    Марка Германии 1936 год

    Stamps of Germany (DDR) 1977, MiNr 2200.jpg

    Марка ГДР 1977 год

    Stamps of Germany (DDR) 1969, MiNr 1514.jpg

    Марка ГДР 1969 год

    Stamp Germany 2002 MiNr2282 Otto von Guericke.jpg

    Марка Германии 2002

Память

Труды

  • Guericke, Otto . Experimenta nova (ut vocantur) Magdeburgica de vacuo spatio, 1672. Имеется в «».

Напишите отзыв о статье "Герике, Отто фон"

Примечания

  1. , с. 124.
  2. in: Gaspar Schott, Mechanica Hydraulico-pneumatica (Würzburg, (Germany): Henrick Pigrin, 1657), pp. 441-488.
  3. Schneider, Ditmar (2002). Otto von Guericke: ein Leben für die alte Stadt Magdeburg (in German) (3., bearb. und erw. Aufl. ed.). Stuttgart: Teubner: Teubner. ISBN 3-519-25153-1, p. 144
  4. Walther Kiaulehn: Die eisernen Engel. Eine Geschichte der Maschinen von der Antike bis zur Goethezeit . Berlin, 1935, Deutscher Verlag, neu aufgelegt 1953 im Rowohlt Verlag
  5. Прибор этот, очень удачно задуманный, состоял из герметически закрывающегося резервуара, куда помещалась горящая свеча, воронкообразного сосуда с водой, через дно которого проходила трубка от резервуара, выступающая над поверхностью воды, и наконец - из стеклянного колпака, установленного вверх дном и погруженного краями в воду над открытыми концами трубки. Когда горящая свеча была помещена в резервуар с воздухом, этот последний сначала от нагревания расширялся и через соединительную трубку вытеснял часть воды из-под колпака, вслед за тем, пока свеча могла гореть, замечалось поднятие уровня воды в колпаке, и этим наглядно доказывалось, что некоторая часть воздуха уничтожалась при горении.
  6. До половины 17 века люди могли обходится без какого бы то ни было прибора для измерения теплоты. В древности термометры тоже были, по-видимому, совершенно неизвестны.
  7. Флорентийские академики впервые устроили термометр (спиртовой) настоящего вида, с запаянным верхним концом. За постоянную точку сначала была принята температура глубокого погреба. Впоследствии только за эту точку стали принимать температуру замерзания воды.
  8. Вторую постоянную точку, без которой, очевидно, понятие о градусе не могло стать вполне определенным и показания различных приборов не могли быть сравнены, предложил принять лишь в начале 18 века Амонтон и указал для этой точки температуру кипения воды.
  9. Только после 1745 года, когда было открыто свойство Лейденской банки (Мушенбруком и фон Клейстом) электрические явления получили большую популярность, а различные опыты показывались на площадях и улицах.
  10. Первым кто прибавил к электрической машине конденсатор, был профессор физики Бозе (в Виттерберге) [уточнить ] , около 1740 года. Первоначально конденсатором была свинцовая труба, которую держал в руке человек, изолированный от пола.
  11. Электрическая искра была впервые получена (из натертого янтаря) доктором Валлеме в 1700 году, а немного позже, около 1710 года, Гауксби получил уже искры длиной в дюйм, при помощи видоизмененного прибора Герике, у которого серный шар был заменен на стеклянный.

Литература

  • Кудрявцев, П. С. . - 2-е изд., испр. и доп. - М .: Просвещение, 1982. - 448 с.
  • Большая советская энциклопедия. В 30 тт.
  • Кауффельд А. // Историко-астрономические исследования, вып. XI. - М ., 1972. - С. 221-236 .
  • Борисов В. П. Изобретение вакуумного насоса и крушение догмы «боязни пустоты» (400 лет со дня рождения Отто фон Герике) // Вопросы естествознания и техники. - 2002. - № 4 .
  • // В.О.Ф.Э.М. . - 1886. - № 6,9 . - С. 119-124,191-195 .
  • Храмов Ю. А. Отто фон Герике (Guericke Otto von) // Физики: Биографический справочник / Под ред. А. И. Ахиезера . - Изд. 2-е, испр. и дополн. - М .: Наука , 1983. - С. 80-81. - 400 с. - 200 000 экз. (в пер.)

Ошибка Lua в Модуль:External_links на строке 245: attempt to index field "wikibase" (a nil value).

Отрывок, характеризующий Герике, Отто фон

– Видишь, любимый, как же я могу идти с тобой?.. – тихо прошептала Эсклармонд. – Ты иди! Обещай, что спасёшь его. Обещай мне, пожалуйста! Я тебя буду любить и там... И сына.
Эсклармонд разрыдалась... Она так хотела выглядеть мужественной и сильной!.. Но хрупкое и ласковое женское сердце её подвело... Она не хотела, чтобы они уходили!.. Она даже не успела узнать своего маленького Видомира! Это было намного больнее, чем она наивно предполагала. Это была боль, от которой не находилось спасения. Ей было так нечеловечески больно!!!
Наконец, в последний раз поцеловав своего маленького сынишку, она отпустила их в неизвестность... Они уходили, чтобы выжить. А она оставалась, чтобы умереть... Мир был холодным и несправедливым. И не оставалось в нём места даже для Любви...
Закутавшись в тёплые одеяла, четверо суровых мужчин вышли в ночь. Это были её друзья – Совершенные: Хюго (Hugo), Амьель (Amiel), Пуатеван (Poitevin) и Светозар (о котором не упоминается ни в одной оригинальной рукописи, везде просто говорится, что имя четвёртого Совершенного осталось неизвестным). Эсклармонд порывалась выйти за ними... Мать не отпустила её. В этом не было больше смысла – ночь была тёмной, и дочь только помешала бы уходящим.

Такова была их судьба, и встречать её надо было с высоко поднятой головой. Как бы это ни было трудно...
Спуск, по которому ушли четверо Совершенных, был очень опасным. Скала была скользкой и почти вертикальной.
И спускались они на верёвках, привязанных за талию, чтобы, в случае беды, руки каждого оставались свободными. Только Светозар чувствовал себя беззащитно, так как он поддерживал привязанного к нему ребёнка, который, напоенный маковым отваром (чтобы не кричал) и устроенный на широкой папиной груди, сладко спал. Узнал ли когда-либо этот малыш, какой была его первая ночь в этом жестоком мире?.. Думаю, что узнал.

Он прожил долгую и сложную жизнь, этот маленький сын Эсклармонды и Светозара, которого мать, видевшая его лишь мгновение, нарекла Видомиром, зная, что её сын будет видеть будущее. Будет чудесным Видуном...
– Так же оклеветанный церковью, как остальные потомки Магдалины и Радомира, он закончит свою жизнь на костре. Но в отличие от многих, рано ушедших, в момент его смерти ему будет уже ровно семьдесят лет и два дня, и звать его на земле будут Жаком де Молэй (Jacques de Molay)... последним великим Магистром Ордена Тамплиеров. А также последним главою светлого Храма Радомира и Магдалины. Храма Любви и Знания, который так и не сумела уничтожить Римская церковь, ибо всегда оставались люди, свято хранившие его в своих сердцах.
(Тамплиеры умерли оклеветанными и замученными слугами короля и кровожадной католической церкви. Но самым абсурдным было то, что умерли они напрасно, так как на момент своей казни были уже оправданы Папой Клементом!.. Только вот документ этот каким-то образом «затерялся», и никто не видел его до 2002 года, когда он оказался «случайно» вдруг обнаруженным в Архивах Ватикана под номером 217, вместо «правильного» номера 218... И назывался этот документ – Пергамент Шинона (Parchement of Chinon), рукопись из города, в котором провёл последние годы своего заточения и пыток Жак де Молэй).

(Если кого-то интересуют подробности настоящей судьбы Радомира, Магдалины, Катаров и Тамплиеров, прошу смотреть Дополнения после глав Изидоры или отдельную (но ещё только готовящуюся) книгу «Дети Солнца», когда она будет выставлена на сайте www.levashov.info для свободного копирования).

Я стояла совершенно потрясённая, как это было почти всегда после очередного рассказа Севера...
Неужели тот малюсенький, только что родившийся мальчик был знаменитейшим Жаком де Молэй?!. Сколько разных преразных легенд слышала я об этом загадочном человеке!.. Сколько чудес было связано с его жизнью в полюбившихся мне когда-то рассказах!
(К сожалению, до наших дней не дошли чудесные легенды об этом загадочном человеке... Его, как и Радомира, сделали слабым, трусливым и бесхарактерным магистром, «не сумевшим» сберечь свой великий Орден...)
– Сможешь ли рассказать о нём чуть поподробнее, Север? Был ли он столь сильным пророком и чудотворцем, как рассказывал мне когда-то отец?..
Улыбнувшись моей нетерпеливости, Север утвердительно кивнул.
– Да, я расскажу тебе о нём, Изидора... Я знал его много лет. И множество раз говорил с ним. Я очень любил этого человека... И очень по нему тосковал.
Я не спросила, почему же он не помог ему во время казни? В этом не было смысла, так как я заранее знала его ответ.
– Ты – что?!! Ты говорил с ним?!. Пожалуйста, ты ведь расскажешь мне об этом, Север?!. – Воскликнула я.
Знаю, своим восторгом я была похожа на дитя... Но это не имело значения. Север понимал, как важен был для меня его рассказ, и терпеливо помогал мне.
– Только я хотела бы сперва узнать, что стало с его матерью и Катарами. Знаю, что они погибли, но я хотела бы это увидеть своими глазами... Помоги мне, пожалуйста, Север.
И опять реальность исчезла, возвращая меня в Монтсегюр, где проживали свои последние часы чудесные смелые люди – ученики и последователи Магдалины...

Катары.
Эсклармонд тихо лежала на кровати. Её глаза были закрыты, казалось, она спала, измученная потерями... Но я чувствовала – это была всего лишь защита. Она просто хотела остаться одна со своей печалью... Её сердце бесконечно страдало. Тело отказывалось повиноваться... Всего лишь какие-то считанные мгновения назад её руки держали новорождённого сынишку... Обнимали мужа… Теперь же они ушли в неизвестность. И никто не мог с уверенностью сказать, удастся ли им уйти от ненависти «охотников», заполонивших подножье Монтсегюра. Да и всю долину, сколько охватывал глаз... Крепость была последним оплотом Катар, после неё уже ничего не оставалось. Они потерпели полное поражение... Измученные голодом и зимними холодами, они были беспомощны против каменного «дождя» катапульт, с утра до ночи сыпавшихся на Монтсегюр.

– Скажи, Север, почему Совершенные не защищались? Ведь, насколько мне известно, никто лучше них не владел «движением» (думаю, имеется в виду телекинез), «дуновением» и ещё очень многим другим. Почему они сдались?!
– На это есть свои причины, Изидора. В самые первые нападения крестоносцев Катары ещё не сдавались. Но после полного уничтожения городов Алби, Безье, Минервы и Лавура, в которых погибли тысячи мирных жителей, церковь придумала ход, который просто не мог не сработать. Перед тем, как напасть, они объявляли Совершенным, что если они сдадутся, то не будет тронут ни один человек. И, конечно же, Катары сдавались... С того дня начали полыхать по всей Окситании костры Совершенных. Людей, посвятивших всю свою жизнь Знанию, Свету и Добру, сжигали, как мусор, превращая красавицу Окситанию в выжженную кострами пустыню.
Смотри, Изидора... Смотри, если желаешь увидеть правду...
Меня объял настоящий священный ужас!.. Ибо то, что показывал мне Север, не вмещалось в рамки нормального человеческого понимания!.. Это было Пекло, если оно когда-либо по-настоящему где-то существовало...
Тысячи облачённых в сверкающие доспехи рыцарей-убийц хладнокровно вырезали мечущихся в ужасе людей – женщин, стариков, детей... Всех, кто попадал под сильные удары верных прислужников «всепрощающей» католической церкви... Молодые мужчины, пытавшиеся сопротивляться, тут же падали замертво, зарубленные длинными рыцарскими мечами. Повсюду звучали душераздирающие крики... звон мечей оглушал. Стоял удушающий запах дыма, человеческой крови и смерти. Рыцари беспощадно рубили всех: был ли то новорождённый младенец, которого, умоляя о пощаде, протягивала несчастная мать... или был немощный старик... Все они тут же нещадно зарубались насмерть... именем Христа!!! Это было святотатством. Это было настолько дико, что у меня на голове по-настоящему шевелились волосы. Я дрожала всем телом, не в состоянии принять или просто осмыслить происходящее. Очень хотелось верить, что это сон! Что такого в реальности быть не могло! Но, к сожалению, это всё же была реальность...
КАК могли они объяснить совершающееся зверство?!! КАК могла римская церковь ПРОЩАТЬ (???) совершающим такое страшное преступление?!
Ещё перед началом Альбигойского крестового похода, в 1199 году, Папа Инокентий III «милостиво» заявил: «Любой, исповедующий веру в бога, не совпадающую с церковной догмой, должен быть сожжён без малейшего на то сожаления». Крестовый поход на Катар назывался «За дело мира и веру»! (Negotium Pacis et Fidei)...
Прямо у алтаря, красивый молодой рыцарь пытался размозжить череп пожилому мужчине... Человек не умирал, его череп не поддавался. Молодой рыцарь спокойно и методично продолжал лупить, пока человек наконец-то последний раз не дёрнулся и не затих – его толстый череп, не выдержав, раскололся...
Объятая ужасом юная мать, в мольбе протянула ребёнка – через секунду, у неё в руках остались две ровные половинки...
Маленькая кудрявая девчушка, плача с перепугу, отдавала рыцарю свою куклу – самое дорогое своё сокровище... Голова куклы легко слетела, а за ней мячиком покатилась по полу и голова хозяйки...
Не выдержав более, горько рыдая, я рухнула на колени... Были ли это ЛЮДИ?! КАК можно было назвать вершившего такое зло человека?!
Я не хотела смотреть это дальше!.. У меня больше не оставалось сил... Но Север безжалостно продолжал показывать какие-то города, с полыхавшими в них церквями... Эти города были совершенно пустыми, не считая тысяч трупов, брошенных прямо на улицах, и разлившихся рек человеческой крови, утопая в которой пировали волки... Ужас и боль сковали меня, не давая хоть на минуту вдохнуть. Не позволяя шевельнуться...

Что же должны были чувствовать «люди», отдававшие подобные приказы??? Думаю, они не чувствовали ничего вообще, ибо черным-черны были их уродливые, чёрствые души.

Вдруг я увидела очень красивый замок, стены которого были местами повреждены катапультами, но в основном замок оставался целым. Весь внутренний двор был валом завален трупами людей, утопавших в лужах собственной и чужой крови. У всех было перерезано горло...
– Это Лавур (Lavaur), Изидора... Очень красивый и богатый город. Его стены были самыми защищёнными. Но озверевший от безуспешных попыток главарь крестоносцев Симон де Монтфор позвал на помощь весь сброд, какой только смог найти, и... 15 000 явившихся на зов «солдат Христовых» атаковали крепость... Не выдержав натиска, Лавур пал. Все жители, в том числе 400 (!!!) Совершенных, 42 трубадура и 80 рыцарей-защитников, зверски пали от рук «святых» палачей. Здесь, во дворе, ты видишь лишь рыцарей, защищавших город, и ещё тех, кто держал в руках оружие. Остальных же (кроме сожжённых Катар) зарезав, просто оставили гнить на улицах... В городском подвале убийцы нашли 500 спрятавшихся женщин и детей – их зверски убили прямо там... не выходя наружу...
Во двор замка какие-то люди привели, закованную цепями, симпатичную, хорошо одетую молодую женщину. Вокруг началось пьяное гиканье и хохот. Женщину грубо схватили за плечи и бросили в колодец. Из глубины тут же послышались глухие, жалобные стоны и крики. Они продолжались, пока крестоносцы, по приказу главаря, не завалили колодец камнями...
– Это была Дама Джиральда... Владелица замка и этого города... Все без исключения подданные очень любили её. Она была мягкой и доброй... И носила под сердцем своего первого нерождённого младенца. – Жёстко закончил Север.
Тут он посмотрел на меня, и видимо сразу же понял – сил у меня просто больше не оставалось...
Ужас тут же закончился.
Север участливо подошёл ко мне, и, видя, что я всё ещё сильно дрожу, ласково положил руку на голову. Он гладил мои длинные волосы, тихо шепча слова успокоения. И я постепенно начала оживать, приходя в себя после страшного, нечеловеческого потрясения... В уставшей голове назойливо кружился рой незаданных вопросов. Но все эти вопросы казались теперь пустыми и неуместными. Поэтому, я предпочитала ждать, что же скажет Север.
– Прости за боль, Изидора, но я хотел показать тебе правду... Чтобы ты поняла ношу Катар... Чтобы не считала, что они легко теряли Совершенных...
– Я всё равно не понимаю этого, Север! Так же, как я не могла понять вашу правду... Почему не боролись за жизнь Совершенные?! Почему не использовали то, что знали? Ведь почти что каждый из них мог одним лишь движением истребить целую армию!.. Зачем же было сдаваться?
– Наверное, это было то, о чём я так часто с тобой говорил, мой друг... Они просто не были готовы.
– Не готовы к чему?! – по старой привычке взорвалась я. – Не готовы сохранить свои жизни? Не готовы спасти других, страдавших людей?! Но ведь всё это так ошибочно!.. Это неверно!!!
– Они не были воинами, каким являешься ты, Изидора. – Тихо произнёс Север. – Они не убивали, считая, что мир должен быть другим. Считая, что они могли научить людей измениться... Научить Пониманию и Любви, научить Добру. Они надеялись подарить людям Знание... но не всем, к сожалению, оно было нужно. Ты права, говоря, что Катары были сильными. Да, они были совершенными Магами и владели огромной силою. Но они не желали бороться СИЛОЙ, предпочитая силе борьбу СЛОВОМ. Именно это их и уничтожило, Изидора. Вот почему я говорю тебе, мой друг, они были не готовы. А если уж быть предельно точным, то это мир не был готов к ним. Земля, в то время, уважала именно силу. А Катары несли Любовь, Свет и Знание. И пришли они слишком рано. Люди не были к ним готовы...
– Ну, а как же те сотни тысяч, что по всей Европе несли Веру Катар? Что тянулись к Свету и Знаниям? Их ведь было очень много!
– Ты права, Изидора... Их было много. Но что с ними стало? Как я уже говорил тебе раннее, Знание может быть очень опасным, если придёт оно слишком рано. Люди должны быть готовы, чтобы его принять. Не сопротивляясь и не убивая. Иначе это Знание не поможет им. Или ещё страшнее – попав в чьи-то грязные руки, оно погубит Землю. Прости, если тебя расстроил...
– И всё же, я не согласна с тобою, Север... Время, о котором ты говоришь, никогда не придёт на Землю. Люди никогда не будут мыслить одинаково. Это нормально. Посмотри на природу – каждое дерево, каждый цветок отличаются друг от друга... А ты желаешь, чтобы люди были похожи!.. Слишком много зла, слишком много насилия было показано человеку. И те, у кого тёмная душа, не хотят трудиться и ЗНАТЬ, когда возможно просто убить или солгать, чтобы завладеть тем, что им нужно. За Свет и Знание нужно бороться! И побеждать. Именно этого должно не хватать нормальному человеку. Земля может быть прекрасной, Север. Просто мы должны показать ей, КАК она может стать чистой и прекрасной...
Север молчал, наблюдая за мной. А я, чтобы не доказывать ничего более, снова настроилась на Эсклармонд...
Как же эта девочка, почти ещё дитя, могла вынести такое глубокое горе?.. Её мужество поражало, заставляя уважать и гордиться ею. Она была достойной рода Магдалины, хотя являлась всего лишь матерью её далёкого потомка.
И моё сердце снова болело за чудесных людей, чьи жизни обрывала всё та же церковь, лживо провозглашавшая «всепрощение»! И тут я вдруг вспомнила слова Караффы: «Бог простит всё, что творится во имя его»!.. Кровь стыла от такого Бога... И хотелось бежать куда глаза глядят, только бы не слышать и не видеть происходящее «во славу» сего чудовища!..
Перед моим взором снова стояла юная, измученная Эсклармонд... Несчастная мать, потерявшая своего первого и последнего ребёнка... И никто не мог ей толком объяснить, за что с ними вершили такое... За что они, добрые и невинные, шли на смерть...
Вдруг в залу вбежал запыхавшийся, худенький мальчик. Он явно прибежал прямиком с улицы, так как из его широкой улыбки валом валил пар.
– Мадам, Мадам! Они спаслись!!! Добрая Эсклармонд, на горе пожар!..

Эсклармонд вскочила, собираясь побежать, но её тело оказалось слабее, чем бедняжка могла предположить... Она рухнула прямиком в отцовские объятия. Раймонд де Перейль подхватил лёгкую, как пушинка, дочь на руки и выбежал за дверь... А там, собравшись на вершине Монтсегюра, стояли все обитатели замка. И все глаза смотрели только в одном направлении – туда, где на снежной вершине горы Бидорты (Bidorta) горел огромный костёр!.. Что означало – четверо беглецов добрались до желанной точки!!! Её отважный муж и новорождённый сынишка спаслись от звериных лап инквизиции и могли счастливо продолжать свою жизнь.
Вот теперь всё было в порядке. Всё было хорошо. Она знала, что взойдёт на костёр спокойно, так как самые дорогие ей люди жили. И она по-настоящему была довольна – судьба пожалела её, позволив это узнать.... Позволив спокойно идти на смерть.
На восходе солнца все Совершенные и Верящие катары собрались в Храме Солнца, чтобы в последний раз насладиться его теплом перед уходом в вечность. Люди были измученные, замёрзшие и голодные, но все они улыбались... Самое главное было выполнено – потомок Золотой Марии и Радомира жил, и оставалась надежда, что в один прекрасный день кто-нибудь из его далёких правнуков перестроит этот чудовищно несправедливый мир, и никому не надо будет больше страдать. В узком окне зажёгся первый солнечный луч!.. Он слился со вторым, третьим... И по самому центру башни загорелся золотистый столб. Он всё больше и больше расширялся, охватывая каждого, стоящего в ней, пока всё окружающее пространство полностью не погрузилось в золотое свечение.

Это было прощание... Монтсегюр прощался с ними, ласково провожая в другую жизнь...
А в это время внизу, у подножья горы, складывался огромный страшный костёр. Вернее, целое строение в виде деревянной площадки, на которой «красовались» толстые столбы...
Более двухсот Совершенных начали торжественно и медленно спускаться по скользкой, и очень крутой каменной тропинке. Утро стояло ветреное и холодное. Солнце глянуло из-за туч лишь на коротенькое мгновение... чтобы обласкать напоследок своих любимых детей, своих Катар, идущих на смерть... И снова ползли по небу свинцовые тучи. Оно было серым и неприветливым. И чужим. Всё вокруг было промёрзлым. Моросящий воздух напитывал влагой тонкие одежды. Пятки идущих застывали, скользя по мокрым камням... На горе Монтсегюр всё ещё красовался последний снег.

Внизу озверевший от холода маленький человек хрипло орал на крестоносцев, приказывая срубить побольше деревьев и тащить в костёр. Пламя почему-то не разгоралось, а человечку хотелось, чтобы оно полыхало до самих небес!.. Он заслужил его, он ждал этого десять долгих месяцев, и вот теперь оно свершилось! Ещё вчера он мечтал побыстрее возвратиться домой. Но злость и ненависть к проклятым катарам брала верх, и теперь ему уже хотелось только одного – видеть, как наконец-то будут полыхать последние Совершенные. Эти последние Дети Дьявола!.. И только тогда, когда от них останется лишь куча горячего пепла, он спокойно пойдёт домой. Этим маленьким человечком был сенешаль города Каркасона. Его звали Хюг де Арси (Hugues des Arcis). Он действовал от имени его величества, короля Франции, Филиппа Августа.
Катары спускались уже намного ниже. Теперь они двигались между двух угрюмых, вооружённых колон. Крестоносцы молчали, хмуро наблюдая за процессией худых, измождённых людей, лица которых почему-то сияли неземным, непонятным восторгом. Это охрану пугало. И это было, по их понятию, ненормально. Эти люди шли на смерть. И не могли улыбаться. Было что-то тревожное и непонятное в их поведении, от чего охранникам хотелось уйти отсюда побыстрей и подальше, но обязанности не разрешали – приходилось смиряться.
Пронизывающий ветер развевал тонкие, влажные одежды Совершенных, заставляя их ёжиться и, естественно, жаться ближе друг к другу, что сразу же пресекалось охраной, толкавшей их двигаться в одиночку.
Первой в этой жуткой похоронной процессии шла Эсклармонд. Её длинные волосы, на ветру развеваясь, закрывали худую фигурку шёлковым плащом... Платье на бедняжке висело, будучи невероятно широким. Но Эсклармонд шла, высоко подняв свою красивую головку и... улыбалась. Будто шла она к своему великому счастью, а не на страшную, бесчеловечную смерть. Мысли её блуждали далеко-далеко, за высокими снежными горами, где находились самые дорогие ей люди – её муж, и её маленький новорождённый сынишка... Она знала – Светозар будет наблюдать за Монтсегюром, знала – он увидит пламя, когда оно будет безжалостно пожирать её тело, и ей очень хотелось выглядеть бесстрашной и сильной... Хотелось быть его достойной... Мать шла за нею, она тоже была спокойна. Лишь от боли за любимую девочку на её глаза время от времени наворачивались горькие слёзы. Но ветер подхватывал их и тут же сушил, не давая скатиться по худым щекам.
В полном молчании двигалась скорбная колонна. Вот они уже достигли площадки, на которой бушевал огромный костёр. Он горел пока лишь в середине, видимо, ожидая, пока к столбам привяжут живую плоть, которая будет гореть весело и быстро, несмотря на пасмурную, ветреную погоду. Несмотря на людскую боль...
Эсклармонд поскользнулась на кочке, но мать подхватила её, не давая упасть. Они представляли очень скорбную пару, мать и дочь... Худые и замёрзшие, они шли прямые, гордо неся свои обнажённые головы, несмотря на холод, несмотря на усталость, несмотря на страх.. Они хотели выглядеть уверенными и сильными перед палачами. Хотели быть мужественными и не сдающимися, так как на них смотрел муж и отец...
Раймон де Перейль оставался жить. Он не шёл на костёр с остальными. Он оставался, чтобы помочь оставшимся, кто не имел никого, чтобы их защитить. Он был владельцем замка, сеньором, который честью и словом отвечал за всех этих людей. Раймонд де Перейль не имел права так просто умереть. Но для того, чтобы жить, он должен был отречься от всего, во что столько лет искренне верил. Это было страшнее костра. Это было ложью. А Катары не лгали... Никогда, ни при каких обстоятельствах, ни за какую цену, сколь высокой она бы ни оказалась. Поэтому и для него жизнь кончалась сейчас, со всеми... Так как умирала его душа. А то, что останется на потом – это уже будет не он. Это будет просто живущее тело, но его сердце уйдёт с родными – с его отважной девочкой и с его любимой, верной женой...

Перед Катарами остановился тот же маленький человечек, Хюг де Арси. Нетерпеливо топчась на месте, видимо, желая поскорее закончить, он хриплым, надтреснутым голосом начал отбор...
– Как тебя зовут?
– Эсклармонд де Перейль, – последовал ответ.
– Хюг де Арси, действую от имени короля Франции. Вы обвиняетесь в ереси Катар. Вам известно, в соответствии с нашим соглашением, которое вы приняли 15 дней назад, чтобы быть свободной и сохранить жизнь, вы должны отречься от своей веры и искренне поклясться в верности вере Римской католической церкви. Вы должны сказать: «отрекаюсь от своей религии и принимаю католическую религию!».
– Я верю в свою религию и никогда не отрекусь от неё... – твёрдо прозвучал ответ.
– Бросьте её в огонь! – довольно крикнул человечек.
Ну, вот и всё. Её хрупкая и короткая жизнь подошла к своему страшному завершению. Двое человек схватили её и швырнули на деревянную вышку, на которой ждал хмурый, бесчувственный «исполнитель», державший в руках толстые верёвки. Там же горел костёр... Эсклармонд сильно ушиблась, но тут же сама себе горько улыбнулась – очень скоро у неё будет гораздо больше боли...
– Как вас зовут? – продолжался опрос Арси.
– Корба де Перейль...
Через коротенькое мгновение её бедную мать так же грубо швырнули рядом с ней.
Так, один за другим Катары проходили «отбор», и количество приговорённых всё прибавлялось... Все они могли спасти свои жизни. Нужно было «всего лишь» солгать и отречься от того, во что ты верил. Но такую цену не согласился платить ни один...
Пламя костра трескалось и шипело – влажное дерево никак не желало гореть в полную мощь. Но ветер становился всё сильнее и время от времени доносил жгучие языки огня до кого-то из осуждённых. Одежда на несчастном вспыхивала, превращая человека в горящий факел... Раздавались крики – видимо, не каждый мог вытерпеть такую боль.

Эсклармонд дрожала от холода и страха... Как бы она ни храбрилась – вид горящих друзей вызывал у неё настоящий шок... Она была окончательно измученной и несчастной. Ей очень хотелось позвать кого-то на помощь... Но она точно знала – никто не поможет и не придёт.
Перед глазами встал маленький Видомир. Она никогда не увидит, как он растёт... никогда не узнает, будет ли его жизнь счастливой. Она была матерью, всего лишь раз, на мгновение обнявшей своего ребёнка... И она уже никогда не родит Светозару других детей, потому что жизнь её заканчивалась прямо сейчас, на этом костре... рядом с другими.
Эсклармонд глубоко вздохнула, не обращая внимания на леденящий холод. Как жаль, что не было солнца!.. Она так любила греться под его ласковыми лучами!.. Но в тот день небо было хмурым, серым и тяжёлым. Оно с ними прощалось...
Кое-как сдерживая готовые политься горькие слёзы, Эсклармонд высоко подняла голову. Она ни за что не покажет, как по-настоящему ей было плохо!.. Ни за что!!! Она как-нибудь вытерпит. Ждать оставалось не так уж долго...
Мать находилась рядом. И вот-вот готова была вспыхнуть...
Отец стоял каменным изваянием, смотря на них обеих, а в его застывшем лице не было ни кровинки... Казалось, жизнь ушла от него, уносясь туда, куда очень скоро уйдут и они.
Рядом послышался истошный крик – это вспыхнула мама...
– Корба! Корба, прости меня!!! – это закричал отец.
Вдруг Эсклармонд почувствовала нежное, ласковое прикосновение... Она знала – это был Свет её Зари. Светозар... Это он протянул руку издалека, чтобы сказать последнее «прощай»... Чтобы сказать, что он – с ней, что он знает, как ей будет страшно и больно... Он просил её быть сильной...
Дикая, острая боль полоснула тело – вот оно! Пришло!!! Жгучее, ревущее пламя коснулось лица. Вспыхнули волосы... Через секунду тело вовсю полыхало... Милая, светлая девочка, почти ребёнок, приняла свою смерть молча. Какое-то время она ещё слышала, как дико кричал отец, называя её имя. Потом исчезло всё... Её чистая душа ушла в добрый и правильный мир. Не сдаваясь и не ломаясь. Точно так, как она хотела.
Вдруг, совершенно не к месту, послышалось пение... Это присутствовавшие на казни церковники начали петь, чтобы заглушить крики сгоравших «осуждённых». Хриплыми от холода голосами они пели псалмы о всепрощении и доброте господа...
Наконец, у стен Монтсегюра наступил вечер.
Страшный костёр догорал, иногда ещё вспыхивая на ветру гаснущими, красными углями. За день ветер усилился и теперь бушевал во всю, разнося по долине чёрные облака копоти и гари, приправленные сладковатым запахом горелой человеческой плоти...
У погребального костра, наталкиваясь на близстоявших, потерянно бродил странный, отрешённый человек... Время от времени вскрикивая чьё-то имя, он вдруг хватался за голову и начинал громко, душераздирающе рыдать. Окружающая его толпа расступалась, уважая чужое горе. А человек снова медленно брёл, ничего не видя и не замечая... Он был седым, сгорбленным и уставшим. Резкие порывы ветра развевали его длинные седые волосы, рвали с тела тонкую тёмную одежду... На мгновение человек обернулся и – о, боги!.. Он был совсем ещё молодым!!! Измождённое тонкое лицо дышало болью... А широко распахнутые серые глаза смотрели удивлённо, казалось, не понимая, где и почему он находился. Вдруг человек дико закричал и... бросился прямо в костёр!.. Вернее, в то, что от него оставалось... Рядом стоявшие люди пытались схватить его за руку, но не успели. Человек рухнул ниц на догоравшие красные угли, прижимая к груди что-то цветное...
И не дышал.
Наконец, кое-как оттащив его от костра подальше, окружающие увидели, что он держал, намертво зажав в своём худом, застывшем кулаке... То была яркая лента для волос, какую до свадьбы носили юные окситанские невесты... Что означало – всего каких-то несколько часов назад он ещё был счастливым молодым женихом...
Ветер всё так же тревожил его за день поседевшие длинные волосы, тихо играясь в обгоревших прядях... Но человек уже ничего не чувствовал и не слышал. Вновь обретя свою любимую, он шёл с ней рука об руку по сверкающей звёздной дороге Катар, встречая их новое звёздное будущее... Он снова был очень счастливым.

Отто фон Ге́рике (нем. Otto von Guericke) - немецкий физик, инженер, философ, дипломат и бургомистр Магдебурга. Стремясь доказать существование вакуума, Герике изобрёл воздушный насос (1650). В ряде опытов он доказал существование давления воздуха.

Герике установил также упругость и весомость воздуха, его способность поддерживать горение и дыхание, проводить звук. Доказал наличие в воздухе паров воды. В 1660 г. Герике построил первый в мире водяной барометр и использовал его для предсказания погоды. Занимаясь астрономией, он высказал мнение о том, что кометы могут возвращаться.

В 1663 г. Герике создал одну из первых электрических машин – вращающийся шар из серы, натираемый руками, и обнаружил явление электростатического отталкивания однополярно заряженных предметов.. В 1672 г. он обнаружил, что заряженный шар потрескивает и светится в темноте (электролюминесценция).

Таким образом Отто фон Герике стал одним из родоначальников науки об электричестве. Это был неординарный человек с широчайшим кругозором, добившийся успеха во многих областях человеческой жизнедеятельности.

Отто фон Герике родился в Магдебурге в 1602 году. По окончании городского училища он продолжил обучение в университетах Лейпцига, Хельмштадта, Йены и Лейдена. Особенно его интересовали физика, прикладная математика, механика и фортификация.

Юность Герике пришлась на начало жестокой Тридцатилетней войны , в которой помимо немцев, на разных этапах приняли участие чехи, австрийцы, датчане, шведы и французы.

Как стратегически важный центр восточной Германии, Магдебург неоднократно переходил из рук в руки, а в 1631 году был полностью разрушен. Когда шведы заняли Магдебург, Герике возвратился в город и принял деятельное участие в восстановлении разрушенных зданий и укреплений, руководил строительством моста через Эльбу.

В 1635 г. город снова был захвачен объединенными австро-саксонскими войсками, содержание которых легло тяжким бременем на горожан. Началась дипломатическая деятельность Герике, который после многих хлопот и поездок к курфюрсту саксонскому добился замены чужеземного гарнизона местным.

Город в знак признательности избрал в 1646 г. Отто Герике одним из своих четырех бургомистров. В городском совете он успешно исполнял дипломатические поручения до 1659 года.

В качестве эммисара он вел успешные переговоры с воюющими сторонами в Оснабрюкке, Нюрнберге, Вене, Праге, Регенсбурге.

Успешная дипломатическая деятельность бургомистра Отто Герике способствовала получению Магдебургом ряда привилегий, в частности статуса ганзейского города .

Герике представлял Магдебург на мирной конференции и в дальнейшем в имперском рейхстаге в Регенсбурге. Но мировую славу ему принесли опыты с магдебургскими полушариями.

Отто Герике был женат, имел троих сыновей, но двое из них умерли. Любой досуг буршомистр посвящал своим физическим опытам.

Результаты опытов он обобщил в сочинении "Новые (так называемые) "магдебургские опыты с пустым пространством". В нем он описал и другие свои опыты, в том числе с "мировыми силами", к числу которых относил электрические явления.

B 1666 году Герике был удостоен дворянского звания и стал Отто фон Герике. Курфюрст Бранденбургский назначил его своим советником.

Герике по призванию не был кабинетным ученым, но на протяжении всей жизни интересовался естественными науками. Особенно его интриговал постулат Аристотеля о том, что природа не терпит пустоты. Для проверки этого утверждения он изобрел воздушный насос, с помощью которого в 1654 г.осуществил свой знаменитый опыт с магдебургскими полушариями.

Для выполнения опыта было изготовлено два медных полушария диаметром около 35,5 см, одно из которых было снабжено трубкой для откачивания воздуха. Эти полушария сложили вместе, а между ними поместили кожаное кольцо, пропитанное расплавленным воском.

Неудобное расположение насоса заставило Герике устроить специальный треножник для всего прибора и присоединить к поршню рычаг. Таким образом был создан первый в мире воздушный насос, названный автором Антила Пневматика (лат.Antlia pneumatica).

Затем с помощью насоса откачали воздух из полости, образовавшейся между полушариями. На каждом из полушарий имелись железные кольца, в которые были впряжены две упряжки по восемь лошадей.

Лошади, погоняемые кучерами изо всех сил старались хотя бы сдвинуться с места. Но все попытки разъединить полушария не увенчались успехом, однако когда внутрь полушарий впустили воздух, они распались без усилия.

Опыт с магдебургскими полушариями доказал наличие атмосферного давления и до сих пор излагается в курсах общей физики по всему миру.

В 1654 г. в Регенсбурге Герике продемонстрировал эксперимент рейхстагу в присутствии императора Фердинанда III.

Какая же сила сжимала полушария, противодействуя силе шестнадцати лошадей? Этой силой было действие атмосферного воздуха. Чем больше воздуха выкачивали из полости между полушариями, тем сильнее они сжимались снаружи атмосферным давлением.

Тогда же Отто фон Герике придумал Опыт с плотно завязанным бычьим пузырем, который разбухает и разрывается под колоколом пневматической машины

В 1657 г. Герике изобрел свой грандиозный водяной барометр, устройство которого было тесно связано с его прежними пневматическими опытами.

Барометр состоял из длинной медной трубки, прикрепленной к наружной стенке трехэтажного дома Герике. Нижний конец трубки был погружен в сосуд с водою, а верхний, дополненный стеклянной трубкой, был снабжен краном и мог быть соединён с воздушным насосом.

Вскоре при помощи этого прибора Герике определил, что атмосферное давление постоянно изменяется, поэтому он и назвал свой барометр Семпер вивум (лат.Semper vivum). Потом он заметил соотношение между высотой воды в трубке и состоянием погоды. И изобрел прибор для предсказания погоды.

В приборе для большего эффекта при демонтрации опыта на поверхности воды в стеклянной трубке был установлен поплавок, имевший вид человеческой фигурки с протянутой рукой, которая указывала на таблицу с надписями, соответствующими различным состояниям погоды. Вся остальная часть прибора была замаскирована деревянной обшивкой.

Для изучения электрического состояния и отталкивания Герике приготовил большой шар из серы, который при через продетую через отверстие ось, мог вращаться и его мжно было натереть сухой рукой. Наэлектризовав этот шар, Герике заметил, что тела притягиваются шаром, а после прикосновения отталкиваются.

Общительный бургомистр с удовольствием демонстрировал своим гостям забавный фокус с небольшой сферой, при равномерном вращении создающей вокруг себя световые перья, которые а конечном счете оказывались на носу гостя. Когда сферу раскручивали, то от трения она начинала светиться, испускать искры.

Отто фон Герике про вел множество опытов в вакууме. Ему принадлежат широко известные демонстрации под колоколом воздушного насоса. Прежде всего это замирание звука звонка - опыт, впервые показавший, что звук распространяется только в веществе. В то же время Герике показал, что свет распространяется в вакууме так же, как в воздухе.

Отто фон Герике начал тяготиться обязанностями бургомистра и постепенно стал отходил от политической деятельности, но добился отставки только в 1678 г. На основе пережитого он описал историю осады и разрушения Магдебурга. В 1681 г., когда в Магдебурге разразилась эпидемия чумы, Отто фон Герике переехал в Гамбург к своему единственному сыну, где и умер в 1686 году.

Гений Отто Герике был признан еще при жизни ученого, и подтверждением этому стало присвоение ему дворянского звания, первому из мирового сообщества физиков того времени.

Университет в Магдебурге носит имя Отто фон Герике - своего известного гражданина и бургомистра, замечательного изобретателя, знаменитого ученого, тонкого дипломата и прекрасного человека. Да будет благославенна память о нем!

сороковых годах XVII века бургомистр города Магде­бурга инженер Отто фон Герике начал свои, получившие впоследствии мировую известность, опыты по изучению свойств «пустого» пространства. Герике интересовался стро­ением Вселенной и пытался на опыте получить то «пустое» пространство, в котором движутся планеты, в том числе и Земля. Опыты Герике настолько поучительны, что их до настоящего времени демонстрируют на уроках физики в школе при изучении свойств газа.

Нелегко было в то время получить разреженное про­странство. Для первого опыта Герике взял винную бочку, наполнил ее водой и пытался насосом откачать из нее воду (рис. 4). Вскоре он убедился, что в бочку на место воды проникает воздух. Значит бочка не плотная. Тогда Герике изготовил для опытов медные разъемные шаровидные сосу­ды. Первые же пробы показали, что откачивать воздух из герметичного сосуда нелегко. С увеличением разрежения вытягивание поршня требовало все больших и больших уси­лий. На рис. 5 (взят из книги Герике) видно, как несколько человек пытаются вытянуть поршень. Каково же было

Представление о том, что человек живет на дне воздуш­ного океана, в то время уже существовало, но никому и в голову не приходило, что воз­дух давит на все предметы на Земле с такой огромной силой.

А что же собой представ­ляет пустота? Этот вопрос продолжал занимать Герике, и он настойчиво ставит все но­вые и все более совершенные опыты.

Он конструирует первый в мире воздушный насос и отка­чивает воздух со все большей полнотой. Один из его интерес­ных опытов изображен на рис. 6. Герике поставил два стеклянных сосуда один над другим, соединил их трубкой, на которой имелся кран. В нижний сосуд он налил воду, перекрыл кран, соединяю­щий его с верхним сосудом, затем он создал вакуум в верхнем сосуде. Открыв кран, соединяющий оба сосуда, он увидел, что вода под давлением воздуха поднимается из нижнего сосуда в верхний. Таинственная сила, которую в те­чение тысячелетий называли «боязнью пустоты», была разга­дана - это было давление воздуха. Если учесть, что свои опыты Герике делал, не будучи знаком с опытами Торичел­ли и Паскаля, его следует признать одним из. основополож­ников учения о свойствах газов и основателем вакуумной техники.

Чтобы наглядно показать, с какой большой силой ат­мосферный воздух давит на все предметы, Герике поставил знаменитый опыт с магдебургскими полушариями (рис. 7). Два медных полых полушария сложили вместе, из образо­
вавшегося шара откачали воздух. Для герметичности между полушариями проложили кожаную прокладку, смазанную жиром. К каждому полушарию прочно прикрепили по кольцу, за которые тянули в разные стороны по 8 лошадей.

Но даже 16 лошадей не могли разъединить медные полуша­рия, которые между собою не были ничем соединены и удер­живались вместе только давлением воздуха. Те же полуша­рия легко распадались, как только открывали кран для за­полнения их воздухом.

Насос, которым пользовался Герике, был первым насосом для получения разреженного пространства.

Герике поставил немало остроумных опытов. Он поместил внутри стеклянного шара, из которого был откачан воздух, колокольчик и определил, что звук не распространяется в безвоздушном пространстве.

Изучая свойства «пустого» (разреженного) пространства, Герике установил, что воздух необходим для горения, так как свеча гасла в вакууме. Поместив в стеклянный шар мышь и откачав из него воздух, Герике обнаружил, что в вакууме мышь быстро погибла, следовательно, в вакууме не может быть жизни. У своего дома Герике соорудил водяной баро-

Рис. 8. Водяной барометр Герике.

Метр, состоявший из трубы высотой свыше Юл* (рис. 8), в верх­ней стеклянной части которой на поверхности воды плавала деревянная фигурка человечка. Однажды, обнаружив быст­рое падение уровня воды в барометре, Герике предсказал бурю за несколько часов до ее начала. Это тогда произвело большое впечатление на жителей Магдебурга.

Опыты Герике производили огромное впечатление на его современников. «Пустое» пространство становилось доступ­ным. Конечно, представление о степени «пустоты» простран­ства в то время было далеким от современного, но и эти све­дения были большим шагом вперед на пути познания тайн природы.

Актюбинская область Алгинский район Маржанбулакская средняя школа

Научные общество учащихся ”Жас қанат”

Смирнов Сергей Андреевич

Камзин Исажан Мырзаханович

Тема :

Атмосферное давление

Направление :

Научно-технический прогресс – как ключевое звено

экономического роста

Секция: техника

Руководитель: Есмагамбетов

Қарымсақ Арыстанұлы,

учитель физики

Научный руководитель:

Доцент Актюбинского регионального

государственного университета им.К.Жубанова

кандидат ф-м наук С.К. Тулепбергенов

Маржанбұлақ-2013

I. Введение

(О воздушной оболочке Земли)

II. Исследовательская часть

2.1. Эванджелиста Торричелли (1608–1647)

2.2. Даниил Бернулли (1700-1782)

2.3. Исторический опыт Отто фон Герике (1654 год)

2.4. Водяной барометр Паскаля (1646 год)

2.5. Занимательные опыты по атмосферному давлению

Простые опыты помогают понять, как действует закон Бернулли

II. Заключение

IV. Список использованной литературы

Введение

(О воздушной оболочке Земли)

Ещё в глубокой древности человек замечал, что воздух оказывает давление на наземные предметы, особенно во время бурь и ураганов. Он пользовался этим давлением, заставляя ветер двигать парусные суда, вращать крылья ветряных мельниц. Однако долго не удавалось доказать, что воздух имеет вес. Только в XVII веке был поставлен опыт, доказавший весомость воздуха. В Италии в 1640 году герцог Тосканский задумал устроить фонтан на террасе своего дворца. Воду для этого фонтана должны были накачивать из соседнего озера, но вода не шла выше 10.3м. Герцог обратился за разъяснениями к Галилею, тогда уже глубокому старцу. Великий ученый был смущен и не нашелся сразу, как объяснить это явление. И только ученик Галилея, Эванджелиста Торричелли в 1643 году показал, что воздух имеет вес. Совместно с В. Вивиани Торричелли провёл первый опыт по измерению атмосферного давления, изобретя трубку Торричелли (первый ртутный барометр), - стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм, он так же показал, что давление атмосферы уравновешивается столбом воды в 32 фута, или 10.3 м.



Атмосферное давление - давление атмосферы на все находящиеся в ней предметы и Земную поверхность. Атмосферное давление создаётся гравитационным притяжением воздуха к Земле.

По решению Международного геофизического союза (1951 г.) принято считать, что атмосфера Земли состоит из 5 слоев: тропосферы, стратосферы, мезосферы, термосферы и экзосферы. Эти слои не везде имеют четкие границы, их толщина колеблется в зависимости от географической широты, места наблюдения и времени.

Говоря о значении атмосферы, надо отметить, что атмосфера защищает все живое на Земле от разрушительного действия ультрафиолетовых лучей, от быстрого нагревания Земли лучами Солнца и быстрого остывания. Она так же является передатчиком звука. Атмосфера рассеивает солнечный свет, она тем самым освещает те места, куда не попадают прямые лучи Солнца.

ЧТО ПРОИЗОШЛО БЫ НА ЗЕМЛЕ, если бы воздушная атмосфера вдруг исчезла?

На Земле установилась бы температура приблизительно -170 °С, замерзли бы все водные пространства, а суша покрылась бы ледяной корой.Наступила бы полная тишина, так как звук в пустоте не распространяется; небо стало бы черным, поскольку окраска небесного свода зависит от воздуха; не стало бы сумерек, зорь, белых ночей Прекратилось бы мерцание звезд, а сами звезды были бы видны не только ночью, но и днем (днем мы их не видим из-за рассеивания частичками воздуха солнечного света).Погибли бы животные и растения.

На земной поверхности атмосферное давление изменяется от места к месту и во времени. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 - 816 мм рт. ст. (внутри смерча давление падает и может достигать значения 560 мм ртутного столба).

Нормальным атмосферным давлением называют давление в 760 мм рт.ст. на уровне моря при температуре 0°C. (Международная стандартная атмосфера - МСА)(101 325 Па). Каждое утро в сводках погоды передаются данные об атмосферном давлении на уровне моря.
Почему же атмосферное давление, измеренное на суше, чаще всего приводят к уровню моря? Дело в том, что атмосферное давление убывает с высотой и довольно существенно. Так на высоте 5000 м оно уже примерно в два раза ниже. Поэтому для получения представления о реальном пространственном распределении атмосферного давления и для сравнимости его величины в различных местностях и на разных высотах, для составления синоптических карт и т.п., давление приводят к единому уровню, т.е. к уровню моря.
Измеренное на площадке метеостанции расположенной на высоте 187 м над уровнем моря атмосферное давление, в среднем на 16-18 мм.рт. ст. ниже, чем внизу на берегу моря. При подъеме на 10,5 метра атмосферное давление понижается на 1 мм ртутного столба.

Атмосферное давление изменяется не только с высотой. В одном и том же пункте на земной поверхности атмосферное давление, то увеличивается, то уменьшается. Причина колебаний атмосферного давления заключается в том, что давление воздуха зависит от его температуры. Воздух при нагревании расширяется. Теплый воздух легче холодного, поэтому 1м 3 воздуха на одной и той же высоте весит меньше, чем 1 м 3 холодного. Значит, давление теплого воздуха на земную поверхность меньше, чем холодного.

«Нормальным» атмосферным давлением называется давление, равное весу ртутного столба высотой 760 мм, находящегося при температуре 0,0 °C, на широте 45° и на уровне моря. Основной единицей давления в системе СИ, служит паскаль [Па]; 1 Па= 1 Н/м2. В системе СИ 101325 Па или 101.3 кПа или 0,1 Мпа.

ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ(1608–1647)

Итальянский математик и физик Эванджелиста Торричелли родился в Фаэнце в небогатой семье, воспитывался у дяди. Учился в иезуитском колледже, а затем получил математическое образование в Риме. В 1641 г. Торричелли переехал в Арчетри, где помогал Галилею в обработке его трудов. С 1642 г., после смерти Галилея, придворный математик великого герцога Тосканского и одновременно профессор математики Флорентийского университета.

Наиболее известны труды Торричелли в области пневматики и механики. Он в 1643 году изобрел прибор для измерения атмосферного давления – барометр.

Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами - вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжелым веществом - ртутью, предпринятые Эванджелиста Торричелли привели к тому, что в 1643 он доказал, что воздух имеет вес. Своим достаточно простым опытом Эванжелиста Торричелли измерил атмосферное давление и сделал первые выводы о давлении столба жидкости, которые зафиксированы в основном законе гидростатики. В опыте, поставленном в 1643 г. использовалась запаянная с одного конца тонкая стеклянная трубка, которую наполняли ртутью, после чего переворачивали и открытым концом опускали в стеклянную ванночку, также наполненную ртутью (см. рис.). Только часть ртути перетекала в корытце, а у запаянного конца трубки возникала т.н. пустота Торричелли (на самом деле, эта «пустота» была наполнена насыщенными парами ртути, но их давление при комнатной температуре гораздо меньше атмосферного, поэтому приближенно можно назвать эту область пустотой).

Наблюдаемый эффект свидетельствовал о том, что ртуть от полного выливания удерживала некоторая сила, действующая со стороны нижнего конца трубки. Эта силу и создавало атмосферное давление, противостоящее весу столба жидкости.

В настоящее время давление атмосферы, равное давлению столба ртути высотой 760 мм при температуре 0 °С, принято называть нормальным атмосферным давлением.

Подставляя в эту формулу значения р= 13595,1 кг/м 3 (плотность ртути при 0 °С), g = 9,80665 м/с 2 (ускорение свободного падения) и h = 760 мм = 0,76 м (высота столба ртути, соответствующая нормальному атмосферному давлению), получим следующую величину: Р=р g h = 13595,1 кг/м 3 Х 9,80665 м/с 2 Х 0,76 м = 101 325 Па.

Это и есть нормальное атмосферное давление.

Столб ртути в трубке имел всегда одну и ту же высоту, равную примерно 760мм. Отсюда и единица измерения давления - миллиметр ртутного столба (мм рт. ст.). По формуле выше мы получаем, что в Паскалях

Торричелли обнаружил, что высота столба ртути в его опыте не зависит ни от формы трубки,ни от ее наклона. На уровне моря высота ртутного столба всегда была около 760мм.

Ученый предположил, что высота столба жидкости уравновешивается давлением воздуха. Зная высоту столба и плотность жидкости, можно определить величину давления атмосферы. Правильность предположения Торричелли была подтверждена в 1648 голу опытом Паскаля на горе Пью-де-Дом. Паскаль доказал, что меньший столб воздуха оказывает меньшее давление. Вследствие притяжения Земли и недостаточной скорости молекулы воздуха не могут покинуть околоземное пространство. Однако они не падают на поверхность Земли, а парят над ней, т.к. находятся в непрерывном тепловом движении.

Благодаря тепловому движению и притяжению молекул к Земле их распределение в атмосфере неравномерно. На небольших высотах каждые 12 м подъема уменьшают атмосферное давление на 1 мм рт.ст. На больших высотах эта закономерность нарушается.

Происходит это потому, что высота воздушного столба, оказывающего давление, при подъеме уменьшается. Кроме того, в верхних слоях атмосферы воздух менее плотен.

ДАНИИЛ БЕРНУЛЛИ(1700-1782)

В 18 веке математик и механик академик Петербургской академии наук Даниил Бернулли проводил опыт с трубой разной толщины, по которой текла жидкость. Предположим, что жидкость течет по горизон-тальной трубе, сечение которой в разных местах различное. Выделим мыслен-но несколько сечений в трубе, их площади: S1 S2, S3. S4.

За какой-то промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Вся жидкость, которая за время t проходит через первое сечение, должна за это же время пройти и все остальные отрезки меньшего диаметра. Если бы это было не так и через сечение площадью S3 за время t прошло меньше жидкости, чем через сечение площадью S1 , то избыток жидкости должен был где-то накапливаться. Но жидкость заполняет трубу, и накапливаться ей негде. Заметим, что мы считаем, что жидкость несжимаема и повсюду имеет один и тот же объем. Как же может жидкость, протекшая через первое сечение, «успеть» за то же время протечь и через значительно меньшее сечение площадью S3? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких.

В разных по толщине отрезках трубы вертикально впаяна трубка – манометр. В узких местах трубы, высота столбика жидкости меньше, чем в широких. Это значит, что в узких местах давление меньше.

Давление жидкости, текущей в трубе, больше в тех частях трубы, где скорость ее движения меньше, и, наоборот, в тех частях, где скорость больше, давление меньше. В этом и состоит Закон Бернулли.

В широкой части трубы скорость меньше, чем в узкой части во столько раз, во сколько раз площадь поперечного сечения 1 больше 2.

Пусть жидкость течет без трения по трубе переменного сечения:

Иначе говоря, через все сечения трубы проходят одинаковые объемы жидкости, иначе жидкости пришлось бы либо разорваться где-нибудь, либо сжаться, что невозможно. За время t через сечение S 1 пройдет объем

, а через сечение S 2 – объем . Но так как эти объемы равны, то

Скорость течения жидкости в трубе переменного сечения обратно пропорциональна площади поперечного сечения.

Если площадь поперечного сечения увеличилась в 4 раза, то скорость уменьшилась во столько же раз и наоборот, во сколько раз уменьшилось сечение трубы, во столько же раз увеличилась скорость течения жидкости или газа. Где наблюдается такое явление изменения скорости? Например, на реке, впадающей в море, наблюдается уменьшение скорости, вода из ванны - скорость увеличивается, мы наблюдаем турбулентное течение воды. Если скорость невелика, то жидкость течет как бы разделенная на слои (“ламиниа” – слой). Течение называется ламинарным.

Итак, выяснили, что при течении жидкости из узкой части в широкую или наоборот,скорость изменяется, следовательно, жидкость движется с ускорением. А что является причиной возникновения ускорения? (Сила (второй закон Ньютона)). Какая же сила сообщает жидкости ускорение? Этой силой может быть только разность сил давления жидкости в широкой и узкой частях трубы.

Уравнение Бернулли показывает, что давление текущей жидкости или газа больше там, где скорость меньше, и давление меньше там, где скорость течения больше. Этот казалось бы парадоксальный вывод подтверждается прямыми опытами.

К этому выводу впервые пришел академик Петербургской академии наук Даниил Бернулли в 1726 году и закон теперь носит его имя.

Он остается в силе для движения жидкости и для газов, не ограниченного стенками трубы,- в свободном потоке жидкости.

ИСТОРИЧЕСКИЙ ОПЫТ ОТТО ФОН ГЕРИКЕ (1654 ГОД)

К выводу о существовании атмосферного давления немецкий физик Отто фон Герике (1602-1686) пришел независимо от Торричелли (об опытах которого он узнал с опозданием на девять лет). Откачивая как-то воздух из тонкостенного металлического шара, Герике вдруг увидел, как этот шар сплющился. Размышляя над причиной аварии, он понял, что расплющивание шара произошло под действием давления окружающего воздуха.

Открыв атмосферное давление, Герике построил около фасада своего дома в г. Магдебурге водяной барометр, в котором на поверхности жидкости плавала фигурка в виде человечка, указывающего на деления, нанесенные на стекле.

В 1654 г. Герике, желая убедить всех в существовании атмосферного давления, произвел знаменитый опыт с «магдебургскими полушариями». На демонстрации опыта присутствовали император Фердинанд III и члены Регенсбургского рейхстага. В их присутствии из полости между двумя сложенными вместе металлическими полушариями выкачали воздух. При этом силы атмосферного давления так сильно прижали эти полушария друг к другу, что их не смогли разъединить несколько пар лошадей.Ниже представлена знаменитый рисунок Г. Шотта, на котором изображены 16 лошадей, по 8 с каждой стороны от металлических Магдебургских полушарий, между которыми создан вакуум. Полушария прижимает друг к другу не что иное как атмосферное давление, и эта сила столь велика, что оторвать полушария друг от друга не может даже такая приличная упряжь.

ВОДЯНОЙ БАРОМЕТР ПАСКАЛЯ (1646 г)

Опыты Торричелли заинтересовали многих ученых – его современников. Когда о них узнал фрацузский ученый Блез Паскаль, он повторил их с разными жидкостями (маслом, вином и водой).

На рисунке изображен водяной барометр, созданный Паскалем в 1646 г. Столб воды, уравновешивающий давление атмосферы, оказался намного выше столба ртути. Он оказался равен 10,3 метра.

ЗАНИМАТЕЛЬНЫЕ ОПЫТЫ ПО АТМОСФЕРНОМУ ДАВЛЕНИЮ

Рассмотрим ряд опытов, связанных с действием атмосферного давления.
Воздух имеет вес:

С помощью вакуумного насоса откачаем из стеклянной колбы воздух и уравновесим колбу на рычажных весах. Откроем краник и запустим воздух в колбу, и мы видим, что равновесие весов нарушилась. Этот опыт убедительно показывает, что воздух имеет вес. Поэтому воздух оказывает давление на все предметы вблизи поверхности Земли. Атмосферное давление это давление атмосферы на все находящиеся в ней предметы и Земную поверхность. Атмосферное давление создаётся гравитационным притяжением воздуха к Земле и тепловым движеним молекул воздуха.

Надувание детского шарика откачиванием воздуха!?:

Почему при выкачивании воздуха из-под колокола насоса, находящегося на его тарелке, камера детского, воздушного шарика с хорошо завязанным отростком начинает, как бы надуваться?


Ответ: Внутри камеры давление все время остается постоянным(атмосферное), а снаружи уменьшается. Вследствие разности давлений шарик «надувается».

Опыт с пробиркой с заткнутой резиновой пробкой:

Можно поставить аналогичный опыт с пробиркой с заткнутой резиновой пробкой. При откачивании воздуха из-под колокола пробка из склянки вылетает?! Почему?  Ответ: Пробка вылетает вследствие разности давлений: в колбе давление атмосферное, а вне ее, под колоколом, пониженное.

Еще один опыт с пробирками:

Берем две такие пробирки, чтобы одна из них могла свободно входить в другую. В широкую нальем немного воды, а затем вставим в нее короткую узкую пробирку. Если теперь перевернуть пробирки, то мы увидим, что узкая пробирка не упадет, а, наоборот, по мере вытекания воды будет подниматься вверх, втягиваясь в широкую пробирку.
Почему же это происходит?

Ответ: Давление внутри большой пробирки меньше наружного, вследствие вытекания воды там организовался пустота, поэтому атмосферное давление загоняет маленькую пробирку вовнутрь большого.

Перевернутый стакан:

Наполним обыкновенный стакан до краёв водой. Накроем его листком бумаги, плотно прикрыв его рукой, перевернём бумагой вниз. Осторожно уберём руку, держа стакан за дно. Вода не выливается. Почему это происходит?

Ответ: Воду удерживает давление воздуха. Давление воздуха распространяется во все стороны одинаково (по закону Паскаля), значит, и вверх тоже. Бумага служит только для того, чтобы поверхность воды оставалась совершенно ровной.

Опыт с магдебургскими полушариями:

Берем две самодельные железные полушария (диаметр 10 см.) Края полушарий смажем жидким машинным маслом, слегка прижимаем их друг к другу и откачаем с помощью вакуумного насоса воздух. Закроем краник и, как показано на фотографии, повесим на них двух килограммовую гирю, полушария не отрываються. Внутри полушария воздуха нет, или его мало, поэтому наружное атмосферное давление их плотно прижимает друг к другу и не дает им разорваться. В 1654 году немецкий физик Отто фон Герике, желая убедить всех в существовании атмосферного давления, произвел знаменитый опыт в г. Магдебурге с подобными полушариями диаметром около одного метра, где их не смогли разорвать восемь пар лошадей. В честь этого знаменитого опыта такие полушария назвали «магдебургскими полушариями».


Барометр Торричелли:

Берем тонкую стеклянную трубку, закрытую с одного конца, заполняем его с подсиненой водой (для лучщей видимости) и после чего переворачиваем его и открытым концом опускаем в стеклянную ванночку. При этом некоторая часть воды вылиется на чашку, пока не закроется горловина трубки и дальше вода не выливается, так как его держит атмосферное давление.

Итальянский математик и физик Эванджелиста Торричелли впервые в 1643 году поставил аналогичный опыт с ртутью: столб ртути в трубке имел высоту, равную примерно 760мм. Такой прибор впоследствии назвали ртутным барометром. Французский ученый Блез Паскаль в 1646 году проделал аналогичный опыт с водой, столб воды, уравновешивающий давление атмосферы, оказался намного выше столба ртути. Он оказался равен 10,3 метра.

На фотографии видно, как исползуя атмосферное давление изготовить простейщую автопойлку для птиц. Для этого достаточно каким- либо образом вертикально закрепить наполненную водой пластиковую бутылку горловиной вниз и поставить снизу плоскую посуду. Когда птицы будуть пить воду, вода из бутылки вылиется настолько чтобы закрыть горлышко бутыля.

Как работает шприц?

Как видно на фотографии вода движется за поршнем. Загоняет жидкость в шприц атмосферное давление.

Переносим воду дырявой кружкой:

Можно ли перенести воду дырявой кружкой? Отвечаем, да можно! Для этого достаточно чем- нибудь плотно закрыть верх кружки и можно переносить воду, атмосферное давление не дасть воде вылиться. Мы такой прибор для опыта, как видно на фотографии, изготовили из пустой консервной банки.


ПРОСТЫЕ ОПЫТЫ ПОМОГАЮТ ПОНЯТЬ, КАК ДЕЙСТВУЕТ ЗАКОН БЕРНУЛЛИ:

Опыт 1:

Прижимаем тарелки и лепестки отталкивая их воздушной струей!:

Когда продуваем воздух между тарелками и лепестками вместо того, чтобы расходиться, они прижимаються друг к другу. Это происходит потому что между тарелками и лепестками скорость воздуха увеличивается, а давление между ними уменшается в сравнении с атмосферным. Эта разность давлений и прижимает их.

Опыт 2: Парящий шарик:

Е сли в струю воздуха положить легкий теннисный шарик, то он будет “плясать” в струе, даже если её расположить слегка наклонно. Почему? Скорость воздушной струи, создаваемой феном, большая, значит давление в этой области низкое. Скорость воздуха во всей комнате небольшая, значит давление – высокое.Область высокого давления не даст шарику упасть из области низкого.

Опыт 3: Столкновение двух корабликов:

З апустим два кораблика в одном направлении.Они начнут сближаться и столкнутся.

Между бортами получается как бы водяной канал.

В узком месте между корабликами давление оказывается ниже, чем в пространстве вокруг них, более высокое давление окружающей воды сближает их и сталкивает.

Историческая справка: Именно закон Бернулли позволил понять, почему в 1912 году небольшой броненосный крейсер “Гаук”, проходя мимо самого большого корабля в мире “Олимпик”, когда корабли приняли положение, как показано на рисунке, словно повинуясь какой-то невидимой силе, “Гаук”неожиданно повернулся носом к “Олимпику”, и не слушаясь руля, двинулся прямо на него и проделал в борту «Олимпика» большую пробоину. В этом же году затонул двойник «Олимпика» - “Титаник”, который не сумел избежать столкновения с айсбергом.

Как вы думаете, что стало причиной кораблекрушения? В данном случае, между движущимися в одном направлении кораблями образовался канал с текущей в обратную сторону водой. А в струе воды давление меньше, чем вокруг, в покоящемся океане. Огромная разность давлений заставила более легкий корабль врезаться в “плавучий город” “Олимпик”, поэтому и “Титаник” не сумел избежать столкновения с айсбергом. Этот пример показывает, что явление Бернулли пройсходит не только на атмосфере, но и на море.

ЗАКЛЮЧЕНИЕ

Мы живем на дне огромного воздушного океана, который называется атмосфера. Слово это («атмос» - воздух, «сфера» - шар) ввел в русский язык М.Ю. Ломоносов.

Если человек не чувствует давление воздуха, потому что внешнее и внутреннее давление уравновешиваются, значит давление проявляет себя в ситуации, когда рядом давления нет или оно очень мало.

Мы собрали большой исторический и теоретическии материал по атмосферному давлению. Проведены качественные эксперименты, подтвердившие известные свойства атмосферного давления.

Однако идея нашей работы не научиться измерять атмосферное давление, а показать, что оно существует. На промышленной основе выпускается только один прибор «Шар Паскаля» для демонстраций закона распространения давления внутри жидкости и газов. Мы изготовили множество простых приборов основанных на действии атмосферного давления и показывающих существование атмосферного давления. На оснаваний этих приборов можно ввести понятие атмосферного давления и показать на занимательных опытах действие атмосферного давления.

Для изготовления приборов не требуется дефицитных материалов. Устройства приборов предельно простое, размеры и параметры не требуют особой точности, хорошо согласуется с имеющимися приборами кабинета физики.

Результаты нашей работы могут быть использованы для демонстрации свойств атмосферного давления на уроках и кружковых- факультативных занятиях по физике.

ЛИТЕРАТУРА

1. «Опытно-экспериментальная и практическая направленность в преподавании физики» Составители: К.А.Есмагамбетов; М.Г.Мукашев г.Актобе, 2002, 46стр.

2. К.А.Есмагамбетов «Оқытудың үш өлшемдік әдістемелік жүйесі: эксперименттік зерттеу мен нәтиже». Актобе, 2010.- 62 бет.

3. П.Л.Головин. Школьный физико-технический кружок. М.:«Просвещение»1991

4. С.А. Хорошавин. Физико-техническое моделирование. М.:Просвещение 1988. –207 стр.

5. Современный урок физики в средней школе. Под редакцией В.Г.Разумовского,

Л.С.Хижняковой М. : «Просвещение» 1983 г. –224 стр.

6. Е.Н. Горячкин. Лабораторная техника и ремесленные приемы.М.: «Просвещение»

1969. –472 стр.

7. Журнал Физика в школе №6 1984г. С.А.Хорошовин «Демонстрационный эксперимент как источник знаний учащихся» стр.56.